Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase delay error analysis of wave plate of division-of-amplitude full Stokes simultaneous polarization imaging system

Yin Yu-Long Sun Xiao-Bing Song Mao-Xin Chen Wei Chen Fei-Nan

Citation:

Phase delay error analysis of wave plate of division-of-amplitude full Stokes simultaneous polarization imaging system

Yin Yu-Long, Sun Xiao-Bing, Song Mao-Xin, Chen Wei, Chen Fei-Nan
PDF
HTML
Get Citation
  • The division-of-amplitude full Stokes simultaneous polarization imaging system has prominent merits, such as real time, high spatial resolution, high precision, etc. The development of the division-of-amplitude full Stokes simultaneous polarization imaging system has a high application value. The division-of-amplitude full Stokes simultaneous polarization imaging system uses polarization beam splitters, a half wave plate (HWP) and a quarter wave plate (QWP) to modulate the incident Stokes vector into four intensity images. Using the four intensity images, the incident Stokes vector can be analyzed. In the system, the phase delay errors of the HWP and the QWP have a direct influence on the measurement accuracy of the incident Stokes vector. A Stokes vector measurement error equation containing the phase delay errors of the HWP and the QWP is established. When there are the phase delay errors of the HWP and the QWP in the system, the Stokes vector measurement errors of the unpolarized light, 0° liner polarized light, 90° liner polarized light, 45° liner polarized light, 135° liner polarized light, right circularly polarized light and left circularly polarized light are analyzed. A method of solving the Stokes vector measurement error of incident light with any polarization state is given. When the Stokes vectors with different degrees of polarization (DOPs) are used as the incident light, the simulation results show that both the Stokes vector measurement error and the DOP measurement error increase with the DOP of incident light increasing. Therefore, we select the polarization measurement accuracy to evaluate the system when the DOP of incident light equals 1. To ensure that the polarization measurement accuracy of the system is within 2%, the phase delay error of the HWP should be within ±1.6° and the phase delay error of the QWP should be within ±0.5°. The analysis results of the phase delay errors of the HWP and the QWP are of great significance for improving the polarization measurement accuracy of the division-of-amplitude full Stokes simultaneous polarization imaging system, and also provide important theoretical guidance in designing and developing the system.
      Corresponding author: Yin Yu-Long, yinyulong_yyl@163.com ; Sun Xiao-Bing, xbsun@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFE0201400), the Common Key Technology Project for Satellite Application of China (Grant No. 30-Y20A010-9007-17/18), the National High Resolution Major Special Project of China (Grant No. GFZX04011805), and the Key Project of Hefei Research Institute of Chinese Academy of Sciences (Grant No. Y73H9P1801).
    [1]

    Zhao H J, Xu W J 2016 Sensors 16 1223Google Scholar

    [2]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202

    [3]

    Teimuraz K, Giorgi K, Barbara K, Giorge K, Vazha K, Eldar K, Otar K, David K 2017 A & A 2 20

    [4]

    钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜 2017 物理学报 66 100701Google Scholar

    Qian H H, Meng B H, Yuan Y L, Hong J, Zhang M M, Li S, Qiu Z W 2017 Acta Phys. Sin. 66 100701Google Scholar

    [5]

    Huang X, Bai J, Wang K, Liu Q, Luo Y, Yang K, Zhang X 2017 Opt. Express 25 001173Google Scholar

    [6]

    Jacques S L, Roussel S, Samatham R 2016 J. Biomed. Opt. 21 071115Google Scholar

    [7]

    Azzam R M A 1982 Opt. Acta 29 685Google Scholar

    [8]

    Pezzaniti J L, Chenault D, Roche M, Reinhardt J, Pezzaniti J P, Schultz H 2008 Proc. SPIE 6972 69720JGoogle Scholar

    [9]

    Oka K, Kaneko T 2003 Opt. Express 11 1510Google Scholar

    [10]

    Luo H T, Oka K, DeHoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413Google Scholar

    [11]

    Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 5791Google Scholar

    [12]

    Saito N, Odate S, Otaki K, Kubota M, Kitahara R, Oka K 2013 Proc. SPIE 8873 88730M−1Google Scholar

    [13]

    权乃承, 张淳民, 穆廷魁 2016 物理学报 65 080703

    Quan N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703

    [14]

    Feng B, Shi Z L, Liu H Z, Liu L, Zhao Y H, Zhang J C 2018 J. Optics-UK 20 065703Google Scholar

    [15]

    李翠丽, 孙晓兵, 王涵, 韦玮, 舒存铭 2014 光学学报 34 0412004

    Li C L, Sun X B, Wang H, Wei W, Shu C M 2014 Acta Optica Sinica 34 0412004

    [16]

    Liu Z, Yang W F, Ye Q H, Hong J, Gong G Y, Zheng X B 2016 Appl. Optics 55 1934Google Scholar

    [17]

    李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康 2016 物理学报 65 134202Google Scholar

    Li H, Zhu J P, Zhang N, Zhang Y Y, Qiang F, Zong K 2016 Acta Phys. Sin. 65 134202Google Scholar

    [18]

    Mu T K, Zhang C M, Li Q W, Liang R G 2015 Opt. Express 23 10822Google Scholar

    [19]

    Alenin A S, Vaughn I J, Tyo J S 2018 Appl. Optics 57 2327Google Scholar

    [20]

    黎高平, 王雷, 谢毅 2009 宇航计测技术 29 55Google Scholar

    Li G P, Wang L, Xie Y 2009 Journal of Astronautic Metrology and Measurement 29 55Google Scholar

    [21]

    廖延彪 2003 偏振光学 (北京: 科学出版社)第45−63页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)

  • 图 1  分振幅型全Stokes同时偏振成像系统原理图

    Figure 1.  Scheme of the division-of-amplitude full Stokes simultaneous polarization imaging system.

    图 2  不同入射光情况下的Stokes参数测量误差 (a) 自然光; (b) 0° 线偏光; (c) 90° 线偏光; (d) 45° 线偏光; (e) 135° 线偏光; (f) 右旋圆偏光; (g) 左旋圆偏光

    Figure 2.  Errors of Stokes parameters of different incident light: (a) Unpolarized light; (b) 0° liner polarized light; (c) 90° liner polarized light; (d) 45° liner polarized light; (e) 135° liner polarized light; (f) right circularly polarized light; (g) left circularly polarized light.

    图 3  邦加球球面上选取1000个不同偏振态的Stokes矢量的 (a) 三维分布和(b) Stokes参数的数值分布

    Figure 3.  (a) 3D distribution and (b) stokes parameters values of 1000 Stokes vectors different degrees of polarization selected on the Poincaré sphere.

    图 4  1000个邦加球球面上的入射光采样点的Stokes参数测量误差 (a) 仅存在1°的 HWP相位延迟误差; (b) 仅存在1°的QWP相位延迟误差

    Figure 4.  The measurement errors of Stokes parameters of 1000 incident light sampling points selected on the Poincaré sphere is simulated: (a) There is only 1° phase delay error of HWP; (b) there is only 1° phase delay error of QWP in the system.

    图 5  不同偏振度的采样点作为入射光时对偏振测量精度的影响 (a) 仅HWP相位延迟误差; (b) 仅QWP相位延迟误差; (c) HWP和QWP相位延迟耦合误差

    Figure 5.  When the sampling points with different degrees of polarization are used as incident light, the effect of measurement accuracy: (a) The phase delay error of the HWP; (b) the phase delay error of the QWP; (c) the phase delay errors of the HWP and the QWP on polarization.

    图 6  1000个邦加球球面上的入射光采样点的偏振度测量误差 (a) 仅存在1°的HWP相位延迟误差; (b) 仅存在1°的QWP相位延迟误差

    Figure 6.  The measurement errors of DOP of 1000 incident light sampling points selected on the Poincaré sphere is simulated: (a) There is only 1° phase delay error of HWP; (b) there is only 1° phase delay error of QWP in the system.

    图 7  入射光的偏振度$P$分别为1.0, 0.8, 0.5, 0.2和0.1时, 偏振度测量精度${\rm{acc}}\_P (\sigma ,\delta ,P)$随HWP相位延迟误差$\sigma $和QWP相位延迟误差$\delta $的变化关系

    Figure 7.  Variation relation of measure accuracy ${\rm{acc}}\_P (\sigma ,\delta ,P)$ of DOP with the phase delay error of HWP and the phase delay error of QWP under the condition of $P$ = 1.0, 0.8, 0.5, 0.2 and 0.1.

    图 8  波片相位延迟误差分析实验光路

    Figure 8.  Experimental optical path of wave plate phase delay error analysis.

    图 9  实验中HWP相位延迟误差$\sigma$ = −0.26°和QWP相位延迟误差$\delta $ = −0.13°时的测量结果 入射光 (a) ${{{S}}_0}$分量; (b) ${{{S}}_1}$分量; (c) ${{{S}}_2}$分量; (d) ${{{S}}_3}$分量; (e) 偏振度

    Figure 9.  Measurement results: (a) ${{{S}}_0}$ component; (b) ${{{S}}_1}$ component; (c) ${{{S}}_2}$ component; (d) ${{{S}}_3}$ component; (e) DOP of the incident light under the condition of $\sigma $ = −0.26° and $\delta$ = −0.13°.

    表 1  分振幅型全Stokes同时偏振成像系统设计参数

    Table 1.  Parameters of division-of-amplitude full Stokes simultaneous polarization imaging system.

    参数名称参数值
    1/2波片相位延迟量
    (Retardance of HWP)
    180°
    1/4波片相位延迟量
    (Retardance of QWP)
    90°
    1/2波片快轴方位角
    (Fast axis orientation of HWP)
    −22.5°
    1/4波片快轴方位角
    (Fast axis orientation of QWP)
    45°
    部分偏振分束器分束比
    (Splitting ratio of PPBS)
    Tp/Ts = 0.8/0.2
    DownLoad: CSV

    表 2  系统偏振度测量精度${\rm{acc}}\_P(\sigma ,\delta ,P {\rm{ = }} 1)$随HWP相位延迟误差$\sigma $和QWP相位延迟误差$\delta $的变化关系

    Table 2.  Variation relation of measure accuracy ${\rm{acc}}\_P(\sigma ,\delta ,P {\rm{ = }} 1)$ of DOP with the phase delay error $\sigma $ of HWP and the phase delay error $\delta $ of QWP.

    $\sigma $$\delta$
    −1.0°−0.9°−0.6°−0.5°0.5°0.6°0.9°1.0°
    −3.2°3.22%3.07%2.65%2.53%2.03%2.54%2.68%3.11%3.26%
    −3.1°3.17%3.02%2.59%2.47%1.97%2.48%2.62%3.05%3.20%
    −1.7°2.50%2.32%1.82%1.66%1.06%1.67%1.83%2.33%2.50%
    −1.6°2.46%2.28%1.77%1.61%1.00%1.62%1.78%2.28%2.46%
    −0.5°2.13%1.92%1.31%1.12%0.31%1.12%1.31%1.92%2.13%
    2.09%1.88%1.25%1.04%01.04%1.25%1.88%2.09%
    0.5°2.13%1.92%1.32%1.12%0.31%1.12%1.32%1.92%2.13%
    1.6°2.45%2.27%1.77%1.62%1.00%1.61%1.77%2.27%2.45%
    1.7°2.49%2.31%1.82%1.67%1.06%1.66%1.82%2.31%2.49%
    3.1°3.20%3.05%2.64%2.50%1.95%2.46%2.59%3.02%3.17%
    3.2°3.25%3.11%2.70%2.57%2.02%2.52%2.65%3.07%3.22%
    DownLoad: CSV

    表 3  系统偏振测量精度${\rm{acc}}\_{{{S}}^{\left( {\sigma ,\delta } \right)}}$随HWP相位延迟误差$\sigma $和QWP相位延迟误差$\delta $的变化关系

    Table 3.  Variation relation of system polarization measurement accuracy ${\rm{acc}}\_{{{S}}^{\left( {\sigma ,\delta } \right)}}$ with the phase delay error $\sigma $ of HWP and the phase delay error $\delta $ of QWP.

    $\sigma$$\delta $
    −1.0°−0.9°−0.6°−0.5°0.5°0.6°0.9°1.0°
    −3.2°4.01%4.01%4.01%4.01%4.01%4.01%4.01%4.01%4.01%
    −3.1°3.88%3.88%3.88%3.88%3.88%3.88%3.88%3.88%3.88%
    −1.7°3.48%3.14%2.11%2.11%2.11%2.11%2.11%3.14%3.48%
    −1.6°3.48%3.14%2.09%1.99%1.99%1.99%2.09%3.14%3.48%
    −0.5°3.48%3.14%2.09%1.74%0.62%1.74%2.09%3.14%3.48%
    3.48%3.14%2.09%1.74%01.74%2.09%3.14%3.48%
    0.5°3.48%3.14%2.09%1.74%0.62%1.74%2.09%3.14%3.48%
    1.6°3.48%3.14%2.09%1.99%1.99%1.99%2.09%3.14%3.48%
    1.7°3.48%3.14%2.11%2.11%2.11%2.11%2.11%3.14%3.48%
    3.1°3.88%3.88%3.88%3.88%3.88%3.88%3.88%3.88%3.88%
    3.2°4.01%4.01%4.01%4.01%4.01%4.01%4.01%4.01%4.01%
    DownLoad: CSV

    表 4  实验光路中PSG的主要参数

    Table 4.  Parameters of PSG in the experimental optical path.

    参数名称参数值
    He-Ne激光器输出波长632.99 nm
    He-Ne激光器光强稳定性± 0.1%
    电动转台旋转精度0.005°
    偏振片消光系数≥ 10000∶1
    零级QWP相位延迟量89.87°@632.99 nm
    DownLoad: CSV

    表 5  实验光路中四分束偏振分析器的主要参数

    Table 5.  Parameters of the four-paths polarization analyzer in the experimental optical path.

    参数名称参数值
    PPBS分束比${{T_{\rm p}^{({\rm PPBS})}} / {T_{\rm s}^{({\rm PPBS})}}}$0.788/0.191
    零级HWP相位延迟量179.74°@632.99 nm
    零级QWP相位延迟量89.87°@632.99 nm
    零级HWP快轴方位角−22.5°
    零级QWP快轴方位角45°
    PBS1分束比${{T_{\rm{p}}^{({\rm{PBS1}})}} / {T_{\rm{s}}^{({\rm{PBS1}})}}}$0.981/0.0007
    PBS2分束比${{T_{\rm{p}}^{({\rm{PBS2}})}} / {T_{\rm{s}}^{({\rm{PBS2}})}}}$0.988/0.0008
    DownLoad: CSV
  • [1]

    Zhao H J, Xu W J 2016 Sensors 16 1223Google Scholar

    [2]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202

    [3]

    Teimuraz K, Giorgi K, Barbara K, Giorge K, Vazha K, Eldar K, Otar K, David K 2017 A & A 2 20

    [4]

    钱鸿鹄, 孟炳寰, 袁银麟, 洪津, 张苗苗, 李双, 裘桢炜 2017 物理学报 66 100701Google Scholar

    Qian H H, Meng B H, Yuan Y L, Hong J, Zhang M M, Li S, Qiu Z W 2017 Acta Phys. Sin. 66 100701Google Scholar

    [5]

    Huang X, Bai J, Wang K, Liu Q, Luo Y, Yang K, Zhang X 2017 Opt. Express 25 001173Google Scholar

    [6]

    Jacques S L, Roussel S, Samatham R 2016 J. Biomed. Opt. 21 071115Google Scholar

    [7]

    Azzam R M A 1982 Opt. Acta 29 685Google Scholar

    [8]

    Pezzaniti J L, Chenault D, Roche M, Reinhardt J, Pezzaniti J P, Schultz H 2008 Proc. SPIE 6972 69720JGoogle Scholar

    [9]

    Oka K, Kaneko T 2003 Opt. Express 11 1510Google Scholar

    [10]

    Luo H T, Oka K, DeHoog E, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413Google Scholar

    [11]

    Cao Q Z, Zhang C M, DeHoog E 2012 Appl. Opt. 51 5791Google Scholar

    [12]

    Saito N, Odate S, Otaki K, Kubota M, Kitahara R, Oka K 2013 Proc. SPIE 8873 88730M−1Google Scholar

    [13]

    权乃承, 张淳民, 穆廷魁 2016 物理学报 65 080703

    Quan N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703

    [14]

    Feng B, Shi Z L, Liu H Z, Liu L, Zhao Y H, Zhang J C 2018 J. Optics-UK 20 065703Google Scholar

    [15]

    李翠丽, 孙晓兵, 王涵, 韦玮, 舒存铭 2014 光学学报 34 0412004

    Li C L, Sun X B, Wang H, Wei W, Shu C M 2014 Acta Optica Sinica 34 0412004

    [16]

    Liu Z, Yang W F, Ye Q H, Hong J, Gong G Y, Zheng X B 2016 Appl. Optics 55 1934Google Scholar

    [17]

    李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康 2016 物理学报 65 134202Google Scholar

    Li H, Zhu J P, Zhang N, Zhang Y Y, Qiang F, Zong K 2016 Acta Phys. Sin. 65 134202Google Scholar

    [18]

    Mu T K, Zhang C M, Li Q W, Liang R G 2015 Opt. Express 23 10822Google Scholar

    [19]

    Alenin A S, Vaughn I J, Tyo J S 2018 Appl. Optics 57 2327Google Scholar

    [20]

    黎高平, 王雷, 谢毅 2009 宇航计测技术 29 55Google Scholar

    Li G P, Wang L, Xie Y 2009 Journal of Astronautic Metrology and Measurement 29 55Google Scholar

    [21]

    廖延彪 2003 偏振光学 (北京: 科学出版社)第45−63页

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) pp45−63 (in Chinese)

  • [1] Xu Jing-Han, Wu Guo-Jun, Dong Jing, Yu Yang, Feng Fei, Liu Bo. Research on polarization characteristics of background light by modified polarization difference imaging method. Acta Physica Sinica, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [2] Sun Sheng, Wang Chao, Shi Hao-Dong, Fu Qiang, Li Ying-Chao. Aberration correction of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system. Acta Physica Sinica, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [3] Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Quantitative phase microscopy imaging based on fractional spiral phase plate. Acta Physica Sinica, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [4] Han Ping-Li, Liu Fei, Zhang Guang, Tao Yu, Shao Xiao-Peng. Multi-scale analysis method of underwater polarization imaging. Acta Physica Sinica, 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [5] Zhang Min-Rui, He Zheng-Quan, Wang Tao, Tian Jin-Shou. Analysis of the influence of diattenuation on optical imaging system by using the theory of vector plane wave spectrum. Acta Physica Sinica, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [6] Qian Hong-Hu, Meng Bing-Huan, Yuan Yin-Lin, Hong Jin, Zhang Miao-Miao, Li Shuang, Qiu Zhen-Wei. Full field of view polarization effect measurement and error analysis of non-polarized channels of spaceborne directional polarimetric camera. Acta Physica Sinica, 2017, 66(10): 100701. doi: 10.7498/aps.66.100701
    [7] Yu Hui, Zhang Rui, Li Ke-Wu, Xue Rui, Wang Zhi-Bin. Principles and simulation of spectropolarimetirc imaging technique based on static dual intensity-modulated Fourier transform. Acta Physica Sinica, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [8] Liu Jing, Jin Wei-Qi, Wang Xia, Lu Xiao-Tian, Wen Ren-Jie. A new algorithm for polarization information restoration with considering the property of optoelectronic polarimeter. Acta Physica Sinica, 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [9] Li Hao, Zhu Jing-Ping, Zhang Ning, Zhang Yun-Yao, Qiang Fan, Zong Kang. Effect of half wave plate angle mismatch on channel modulating imaging result and its compensation. Acta Physica Sinica, 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [10] Xu Jie, Liu Fei, Liu Jie-Tao, Wang Jiao-Yang, Han Ping-Li, Zhou Cong-Hao, Shao Xiao-Peng. A design of real-time unipath polarization imaging system based on Wollaston prism. Acta Physica Sinica, 2016, 65(13): 134201. doi: 10.7498/aps.65.134201
    [11] Qiang Fan, Zhu Jing-Ping, Zhang Yun-Yao, Zhang Ning, Li Hao, Zong Kang, Cao Ying-Yu. Reconstruction of polarization parameters in channel modulated polarization imaging system. Acta Physica Sinica, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [12] Guan Jin-Ge, Zhu Jing-Ping, Tian Heng, Hou Xun. Real-time polarization difference underwater imaging based on Stokes vector. Acta Physica Sinica, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [13] Hu Shuai, Gao Tai-Chang, Li Hao, Liu Lei, Cheng Tian-Ji, Zhang Ting. Influence of atmospheric refraction on radiative transfer at visible light band. Acta Physica Sinica, 2015, 64(18): 184203. doi: 10.7498/aps.64.184203
    [14] Hou Jun-Feng, Wu Tai-Xia, Wang Dong-Guang, Deng Yuan-Yong, Zhang Zhi-Yong, Sun Ying-Zi. Study on compensation method of beam deviation in division of time imaging polarimetry. Acta Physica Sinica, 2015, 64(6): 060701. doi: 10.7498/aps.64.060701
    [15] Li Jie, Zhu Jing-Ping, Qi Chun, Zheng Chuan-Lin, Gao Bo, Zhang Yun-Yao, Hou Xun. Static Fourier-transform hyperspectral imaging full polarimetry. Acta Physica Sinica, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [16] Chen Ping, Tang Zhi-Lie, Wang Juan, Fu Xiao-Di, Chen Fei-Hu. Analysis of digital in-line polarization holography by Stokes parameters. Acta Physica Sinica, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [17] Lu Shi-Zhuan, You Kai-Ming, Chen Lie-Zun, Wang You-Wen, Yang Hui, Dai Zhi-Ping. Vectorial structure of a hollow Gaussian beam diffracted by a circular phase aperture in the far field. Acta Physica Sinica, 2012, 61(23): 234201. doi: 10.7498/aps.61.234201
    [18] Kang Guo-Guo, Tan Qiao-Feng, Chen Wei-Li, Li Qun-Qing, Jin Wei-Qi, Jin Guo-Fan. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging. Acta Physica Sinica, 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [19] Liu Ning, Zhang Chun-Min, Wang Jin-Chan, Mu Ting-Kui. The theoretical measurement error of a novel static polarization wind imaging interferometer. Acta Physica Sinica, 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [20] Wu Chong-Qing, Fu Song-Nian, Dong Hui, Liu Hai-Tao. . Acta Physica Sinica, 2002, 51(11): 2542-2546. doi: 10.7498/aps.51.2542
Metrics
  • Abstract views:  10330
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2018
  • Accepted Date:  20 October 2018
  • Available Online:  01 January 2019
  • Published Online:  20 January 2019

/

返回文章
返回