搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑探测器特性的光电偏振成像系统偏振信息重构方法

刘敬 金伟其 王霞 鲁啸天 温仁杰

引用本文:
Citation:

考虑探测器特性的光电偏振成像系统偏振信息重构方法

刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰

A new algorithm for polarization information restoration with considering the property of optoelectronic polarimeter

Liu Jing, Jin Wei-Qi, Wang Xia, Lu Xiao-Tian, Wen Ren-Jie
PDF
导出引用
  • 由于探测器响应的特性, 造成光电偏振成像中直接利用图像灰度重构的偏振信息与真实目标场景偏振信息的严重偏离, 基于重构偏振信息的后续定量化处理将完全失去意义. 为此, 提出了一种考虑探测器特性的光电偏振成像系统偏振信息重构方法, 分别针对分时和同时偏振成像模式分析了实现方法, 并设计进行了实际偏振成像实验. 实验数据表明: 探测器特性直接影响偏振成像系统重构的斯托克斯矢量和偏振度, 值偏离1越大, 直接利用图像灰度重构的偏振度的重构误差也越大; 该偏振信息重构方法能够准确地重构出目标场景的斯托克斯矢量和偏振度信息, 为后续偏振成像的研究和定量应用奠定了理论基础.
    The property of optoelectronic detector indicates that the response between incident light intensity and output digital number is non-linear. For imaging polarimeter, if light intensity is directly substituted by digital number when restoring polarization information from polarization images, the restored polarization information will apparently deviate from the true scene polarization information. This deviation makes the quantitative application of polarization information meaningless. To solve this problem, in this paper we propose a new algorithm for restoring the polarizaiton information with considering the property of polarimeter of the detector. Firstly, theorical correction equation of polarization information restoration are proposed for division-of-time polarimeter and for simultaneous polarimeter respectively. And then, specific implementation and polarization imaging test experiment are carried out. For divison-of-time polarimeter, we firstly test the property of the detector, and then use the tested parameter and the proposed restoration equation to restore polarizaiton information from the data of polarzation imaging test experiment. The degree of linear polarization (DoLP) restored with digital number directly changes from 0.932 to 0.753 when changes from 1.0 to 1.5. The DoLP restored with correction equation proposed in this paper varies from 0.932 to 0.926, which approaches to the ture scene DoLP value 1.0. For simultaneous polarimter, the instrument matrixes of the polarimeter are calibrated first under different setting values, and then the calibrated instrument matrixes are used to restore poliarzation information from the data of polarization imaging test experiment. The DoLP restored with digital number directly changes from 1.3763 to 1.1582 when changes from 1.0 to 1.5, which exceeds the possible DoLP range from 0 to 1.0. The DoLP restored with correction equation proposed in this paper varies from 0.8428 to 0.8683, which approaches to the ture scene DoLP value 1.0. Experimental result shows that the property of polarimeter has an apparent effect on the restored polarization information, and that the polarizaiton information restoration error increases with setting deviation from 1.0. With the restoration algorithm proposed in this paper, the restored polarization information can steadily approach to the scene polarization information with acceptable slants small. The poroposed polarization restoration algorithm with considering property establishes a theoretical foundation for the future study of polarimeter and its quantitative application.
      通信作者: 金伟其, jinwq@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61575023)、国家自然科学基金重点项目(批准号: 61231014) 和国防预研究基金(批准号: 9140A02060415BQ01005)资助的课题.
      Corresponding author: Jin Wei-Qi, jinwq@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575023), the Key Program of the National Natural Science Foundation of China (Grant No. 61231014), and the National Defense Pre-Research Foundation of China (Grant No. 9140A02060415BQ01005).
    [1]

    Farlow C A, Chenault D B, Pezzaniti J L, Spradley K D, Gulley M G 2002 Proc. SPIE 4484 118

    [2]

    Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803 (in Chinese) [李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803]

    [3]

    Hou J F, Wu T X, Wang D G, Deng Y Y, Zhang Z Y, Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese) [侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿 2015 物理学报 64 060701]

    [4]

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203]

    [5]

    Wolff L B 1997 Image Vis. Comput. 15 81

    [6]

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese) [廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页]

    [7]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [8]

    Cairns B, Edgar E R, Larry D T 1999 Proc. SPIE 3754 186

    [9]

    Powell S B, Gruev V 2013 Opt. Express 21 21039

    [10]

    York T, Gruev V 2011 Proc. SPIE 8012 80120 H-1

    [11]

    Song M X, Sun B, Sun X B, Hong J 2012 Optics Precis Eng. 20 1153 (in Chinese) [宋茂新, 孙斌, 孙晓兵, 洪津 2012 光学精密工程 20 1153]

    [12]

    Chen L G, Meng F G, Yuan Y L, Zheng X B 2010 J. Atmosph. Environ. Opt. 5 227 (in Chinese) [陈立刚, 孟凡刚, 袁银麟, 郑小兵 2010 大气与环境光学学报 5 227]

    [13]

    Kang Q, Yuan Y L, Li J J, Wu H Y, Zheng X B, Yan J 2015 J. Atmosph. Environ. Opt. 10 343 (in Chinese) [康晴, 袁银麟, 李健军, 吴浩宇, 郑小兵, 闫静 2015 大气与环境光学学报 10 343]

    [14]

    Gao H W, Zhang C M, Zhao B C 2011 Optik 122 2110

    [15]

    Xu C J, Su L, Yang G Y, Zhao J S, Cai Y, Pan S C 2009 Infrared Technol. 31 362 (in Chinese) [徐参军, 苏兰, 杨根远, 赵劲松, 蔡毅, 潘顺臣 2009 红外技术 31 362]

    [16]

    Xu C J, Zhao J S, Pan S C, Cai Y 2012 Infrared Technol. 34 103 (in Chinese) [徐参军, 赵劲松, 潘顺臣, 蔡毅 2012 红外技术 34 103]

    [17]

    Xia R Q 2015 Ph. D Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [夏润秋 2015 博士学位论文 (北京: 北京理工大学)]

    [18]

    Jin W Q, Hu W J 2006 Radiometry, Luminance and Chromaticity (Beijing: Beijing Institute ofTechnology Press) p34 (in Chinese) [金伟其, 胡威捷 2003 辐射度 光度与色度及其测量 (北京: 北京理工大学出版社) 第34页]

    [19]

    Bai T Z, Jin W Q 2006 Optoelectronis Imaging Theory and Technology (Beijing: Beijing Institute ofTechnology Press) P252 (in Chinese) [白廷柱, 金伟其 2010 光电成像原理与技术 (北京: 北京理工大学出版社) 第252页]

    [20]

    Liu J, Jin W Q, Wang Y H, Wang X 2015 Acta Opt. Sin. 35 0511001 (in Chinese) [刘敬, 金伟其, 王亚慧, 王霞 2015 光学学报 35 0511001]

    [21]

    Bigu L, Cheney N 2007 Proc. SPIE 6682 668205

    [22]

    Azzma R M A, Lopez A G 1989 J. Opt. Soc. Am. A 6 1513

  • [1]

    Farlow C A, Chenault D B, Pezzaniti J L, Spradley K D, Gulley M G 2002 Proc. SPIE 4484 118

    [2]

    Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803 (in Chinese) [李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803]

    [3]

    Hou J F, Wu T X, Wang D G, Deng Y Y, Zhang Z Y, Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese) [侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿 2015 物理学报 64 060701]

    [4]

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203]

    [5]

    Wolff L B 1997 Image Vis. Comput. 15 81

    [6]

    Liao Y B 2003 Polarization Optics (Beijing: Science Press) p45 (in Chinese) [廖延彪 2003 偏振光学 (北京: 科学出版社) 第45页]

    [7]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453

    [8]

    Cairns B, Edgar E R, Larry D T 1999 Proc. SPIE 3754 186

    [9]

    Powell S B, Gruev V 2013 Opt. Express 21 21039

    [10]

    York T, Gruev V 2011 Proc. SPIE 8012 80120 H-1

    [11]

    Song M X, Sun B, Sun X B, Hong J 2012 Optics Precis Eng. 20 1153 (in Chinese) [宋茂新, 孙斌, 孙晓兵, 洪津 2012 光学精密工程 20 1153]

    [12]

    Chen L G, Meng F G, Yuan Y L, Zheng X B 2010 J. Atmosph. Environ. Opt. 5 227 (in Chinese) [陈立刚, 孟凡刚, 袁银麟, 郑小兵 2010 大气与环境光学学报 5 227]

    [13]

    Kang Q, Yuan Y L, Li J J, Wu H Y, Zheng X B, Yan J 2015 J. Atmosph. Environ. Opt. 10 343 (in Chinese) [康晴, 袁银麟, 李健军, 吴浩宇, 郑小兵, 闫静 2015 大气与环境光学学报 10 343]

    [14]

    Gao H W, Zhang C M, Zhao B C 2011 Optik 122 2110

    [15]

    Xu C J, Su L, Yang G Y, Zhao J S, Cai Y, Pan S C 2009 Infrared Technol. 31 362 (in Chinese) [徐参军, 苏兰, 杨根远, 赵劲松, 蔡毅, 潘顺臣 2009 红外技术 31 362]

    [16]

    Xu C J, Zhao J S, Pan S C, Cai Y 2012 Infrared Technol. 34 103 (in Chinese) [徐参军, 赵劲松, 潘顺臣, 蔡毅 2012 红外技术 34 103]

    [17]

    Xia R Q 2015 Ph. D Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [夏润秋 2015 博士学位论文 (北京: 北京理工大学)]

    [18]

    Jin W Q, Hu W J 2006 Radiometry, Luminance and Chromaticity (Beijing: Beijing Institute ofTechnology Press) p34 (in Chinese) [金伟其, 胡威捷 2003 辐射度 光度与色度及其测量 (北京: 北京理工大学出版社) 第34页]

    [19]

    Bai T Z, Jin W Q 2006 Optoelectronis Imaging Theory and Technology (Beijing: Beijing Institute ofTechnology Press) P252 (in Chinese) [白廷柱, 金伟其 2010 光电成像原理与技术 (北京: 北京理工大学出版社) 第252页]

    [20]

    Liu J, Jin W Q, Wang Y H, Wang X 2015 Acta Opt. Sin. 35 0511001 (in Chinese) [刘敬, 金伟其, 王亚慧, 王霞 2015 光学学报 35 0511001]

    [21]

    Bigu L, Cheney N 2007 Proc. SPIE 6682 668205

    [22]

    Azzma R M A, Lopez A G 1989 J. Opt. Soc. Am. A 6 1513

  • [1] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [2] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正. 物理学报, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [3] 宋强, 孙晓兵, 刘晓, 提汝芳, 黄红莲, 王昊. 基于偏振信息探究水下环境气泡群对目标成像的影响. 物理学报, 2021, 70(14): 144201. doi: 10.7498/aps.70.20202152
    [4] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法. 物理学报, 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [5] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠. 分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析. 物理学报, 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [6] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [7] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏. 多尺度水下偏振成像方法. 物理学报, 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [8] 窦健泰, 高志山, 马骏, 袁操今, 杨忠明. 基于图像信息熵的ptychography轴向距离误差校正. 物理学报, 2017, 66(16): 164203. doi: 10.7498/aps.66.164203
    [9] 李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康. 半波片角度失配对通道调制型偏振成像效果的影响及补偿. 物理学报, 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [10] 许洁, 刘飞, 刘杰涛, 王娇阳, 韩平丽, 周淙浩, 邵晓鹏. 基于渥拉斯顿棱镜的单路实时偏振成像系统设计. 物理学报, 2016, 65(13): 134201. doi: 10.7498/aps.65.134201
    [11] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建. 物理学报, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [12] 侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿. 分时偏振成像系统中光束偏离的补偿方法研究. 物理学报, 2015, 64(6): 060701. doi: 10.7498/aps.64.060701
    [13] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [14] 陈友华, 王召巴, 王志斌, 张瑞, 王艳超, 王冠军. 弹光调制型成像光谱偏振仪中的高精度偏振信息探测研究. 物理学报, 2013, 62(6): 060702. doi: 10.7498/aps.62.060702
    [15] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [16] 祝宝辉, 张淳民, 简小华, 曾文锋. 时空混合调制型偏振干涉成像光谱仪的全视场偏振信息探测研究. 物理学报, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [17] 康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩. 亚波长金属线栅的设计、制备及偏振成像实验研究. 物理学报, 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [18] 孙尧, 张淳民, 杜娟, 赵葆常. 一种基于新型偏振干涉成像光谱仪的目标偏振信息探测新方法. 物理学报, 2010, 59(6): 3863-3870. doi: 10.7498/aps.59.3863
    [19] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [20] 曹念文, 刘文清, 张玉钧. 偏振成像技术提高成像清晰度、成像距离的定量研究. 物理学报, 2000, 49(1): 61-66. doi: 10.7498/aps.49.61
计量
  • 文章访问数:  6028
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-02
  • 修回日期:  2016-01-14
  • 刊出日期:  2016-05-05

/

返回文章
返回