搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹光调制型成像光谱偏振仪中的高精度偏振信息探测研究

陈友华 王召巴 王志斌 张瑞 王艳超 王冠军

引用本文:
Citation:

弹光调制型成像光谱偏振仪中的高精度偏振信息探测研究

陈友华, 王召巴, 王志斌, 张瑞, 王艳超, 王冠军

The research of polarized information detection for photo-elastic modulator-based imaging spectropolarimeter

Chen You-Hua, Wang Zhao-Ba, Wang Zhi-Bin, Zhang Rui, Wang Yan-Chao, Wang Guan-Jun
PDF
导出引用
  • 提出了一种基于三弹光调制器的差频偏振调制方法, 并结合声光可调谐滤波技术构成了新型弹光调制型成像光谱偏振探测仪(photo-elastic modulator-based imaging spectro-polarimeter, PEM-ISP). 介绍了PEM-ISP及三弹光差频偏振调制方法的基本工作原理, 并从PEM-ISP的探测原理出发, 通过分析和计算PEM-ISP的Mueller矩阵, 推导出了相应的偏振测量公式; 通过仿真及实验验证了三弹光差频偏振调制方法的可行性和准确性; 最后分析了探测积分步长、采样间隔的选取对偏振测量的影响, 对入射视场角、相位延迟幅值等因素所带来的测量误差进行了初步分析. 结果表明, 1%的相位延迟量误差带来的线偏振度DoLP误差 <0.6%. 本研究为新型PEM-ISP的遥感探测以及Stokes参量的反演的进一步工程化实现提供了必要的理论依据.
    A new method of polarization modulation based triple-photoelastic-modulator (triple-PEM) is proposed as an key component of photo-elastic modulator-based imaging spectro-polarimeter (PEM-ISP) combined with acousto optic tunable filter. The basic principles of PEM-ISP and triple-PEM-based differential frequency polarization modulation are described, that is, the tandem PEMs are operated as an electro-optic circular retardance modulator in a high-performance reflective imaging system. Operating the PEMs at slightly different resonant frequencies generates a differential signal that modulates the polarized component of the incident light at a much lower heterodyne frequency. Then the basic equations for polarization measurement is derived by analyzing and calculating its Muller matrix. The simulation and experiments verify the feasibility and accuracy of polarization measurement by triple-PEM-based differential frequency polarization modulation. Finally, we analyze the influences of the setting of integral step and sampling interval of the detector polarization measurement, and a preliminary error analyses of field angle, phase retardation amplitude etc are also be carried out. The result shows that the measurement error of DoLP is less than 0.6% when the phase retardation error is 1%. This work provides the necessary theoretical basis for remote sensing of new PEM-ISP and for engineering implementation of Stokes parametric inversion.
    • 基金项目: 国家自然科学基金仪器专项基金 (批准号: 61127015)、国际科技合作项目(批准号: 2012DFA10680)和山西省国际科技合作项目(批准号:2010081038) 资助的课题.
    • Funds: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 61127015), the International S & T Cooperation Projects of China (Grant No. 2012DFA10680) and the International S & T Cooperation Projects of Shanxi Province, China (Grant No. 2010081038).
    [1]

    Joseph S T, Dennis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453

    [2]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 物理学报 61 090701]

    [3]

    Wang X Q, Xiang L B, Huang M, Jing J J 2011 Spectrosc. Spect. Anal. 31 1968 (in Chinese) [王新全, 相里斌, 黄旻, 景娟娟 2011 光谱学与光谱分析 31 1968]

    [4]

    Frank C, Jong W, Klamer S 2002 Opt. Eng. 41 1021

    [5]

    Hasekamp O P, Landgraf J 2007 Appl. Opt. 46 3332

    [6]

    Ford K B, Michael R D 2001 Opt. Express 9 444

    [7]

    Kurosaki H 2007 Adv. Space Res. 39 185

    [8]

    Otto P H, Jochen L 2007 Appl. Opt. 46 3332

    [9]

    Jones H S, Iannarilli J F, Kehahian L P 2004 Opt. Express 12 6559

    [10]

    Scharmer G B, Narayan G, Hillberg T 2008 Astrophys. J. 689 I 69

    [11]

    Mahler A B 2010 Ph. D. Dissertation (Arizona: the University of Arizona)

    [12]

    Jian X H, Zhang C M, Zhu B H, Zhao B C, Du J 2008 Acta Phys. Sin. 57 7565 (in Chinese) [简小华, 张淳民, 祝宝辉, 赵葆常, 杜娟 2008 物理学报 57 7565]

    [13]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭婧 2012 物理学报 61 077801]

    [14]

    Zhang C M, Ai J J, Ren W Y 2008 Chin. Phys. B 17 7565

    [15]

    Kemp J C 1969 J. Opt. Soc. Am. 59 950

    [16]

    Liu Y W, Jones G A, Peng Y, Shen T H 2006 J. Appl. Phys. 100 1

    [17]

    Guan W, Jones G A, Liu Y W, Shen T H 2008 Appl. Phys. 103 043104

    [18]

    Keller C U, Povel H, Stenflo J O 1994 Proc. SPIE 2265 222

    [19]

    Gandorfer A M, Povel H P, Steiner P 2004 Astron. Astrophys. 422 703

    [20]

    Ramelli R, Balemi S, Bianda M 2010 Proc. SPIE 773 5

    [21]

    Christian T, Schmid H M, Anthony B 2008 Proceedings of Ground-based and Airborne Instrumentation for Astronomy II Marseille, France June 23, 2008 7014 70143F

    [22]

    Diner D J, Davis A B, Hancock B 2007 Appl. Opt. 46 8428

    [23]

    Diner D J, Davis A B, Hancock B 2010 Appl. Opt. 49 2929

    [24]

    Candorfer A M, Povel H P 1997 Astron. Asirophys. 328 381

    [25]

    Stenflo O J 1984 Appl. Opt. 23 1267

    [26]

    Povel H 1995 Opt. Eng. 34 1870

    [27]

    Mahler A B, Chipman R 2011 Proc. SPIE 6676 667601

    [28]

    Kuldkepp M, Hawkes N C, Rachlew E 2005 Appl. Opt. 44 5899

    [29]

    Katrašnik J, Pernuš F, Likar B 2010 Appl. Spectroscopy 64 1265

    [30]

    Theocaris P S, Gdoutos E E 1979 Matrix Theory of Photo Elasticity (Vol.2) (Berlin: Springer-Verlag)

    [31]

    Wei G, Grenville A J, Liu Y W, Shen T H 2008 J. Appl. Phys. 103 043104

    [32]

    Wang B, List J 2005 Proc. SPIE 5888 436

    [33]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福全 2010 物理学报 59 949]

    [34]

    Wu J F, Zhang C M 2010 Chin. Phys. B 19 034201

    [35]

    Kemp J C 2010 PEM-100 Photoelastic Modulator User Manual (Oregon: Hinds International, Inc.) p77

    [36]

    Kuhn J R, Potter D, Parise B 2001 Astrophys. J. 553 L189

  • [1]

    Joseph S T, Dennis L G, David B C, Joseph A S 2006 Appl. Opt. 45 5453

    [2]

    Zhu B H, Zhang C M, Jian X H, Zeng W F 2012 Acta Phys. Sin. 61 090701 (in Chinese) [祝宝辉, 张淳民, 简小华, 曾文锋 2012 物理学报 61 090701]

    [3]

    Wang X Q, Xiang L B, Huang M, Jing J J 2011 Spectrosc. Spect. Anal. 31 1968 (in Chinese) [王新全, 相里斌, 黄旻, 景娟娟 2011 光谱学与光谱分析 31 1968]

    [4]

    Frank C, Jong W, Klamer S 2002 Opt. Eng. 41 1021

    [5]

    Hasekamp O P, Landgraf J 2007 Appl. Opt. 46 3332

    [6]

    Ford K B, Michael R D 2001 Opt. Express 9 444

    [7]

    Kurosaki H 2007 Adv. Space Res. 39 185

    [8]

    Otto P H, Jochen L 2007 Appl. Opt. 46 3332

    [9]

    Jones H S, Iannarilli J F, Kehahian L P 2004 Opt. Express 12 6559

    [10]

    Scharmer G B, Narayan G, Hillberg T 2008 Astrophys. J. 689 I 69

    [11]

    Mahler A B 2010 Ph. D. Dissertation (Arizona: the University of Arizona)

    [12]

    Jian X H, Zhang C M, Zhu B H, Zhao B C, Du J 2008 Acta Phys. Sin. 57 7565 (in Chinese) [简小华, 张淳民, 祝宝辉, 赵葆常, 杜娟 2008 物理学报 57 7565]

    [13]

    Xie D H, Gu X F, Cheng T H, Yu T, Li Z Q, Chen X F, Chen H, Guo J 2012 Acta Phys. Sin. 61 077801 (in Chinese) [谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭婧 2012 物理学报 61 077801]

    [14]

    Zhang C M, Ai J J, Ren W Y 2008 Chin. Phys. B 17 7565

    [15]

    Kemp J C 1969 J. Opt. Soc. Am. 59 950

    [16]

    Liu Y W, Jones G A, Peng Y, Shen T H 2006 J. Appl. Phys. 100 1

    [17]

    Guan W, Jones G A, Liu Y W, Shen T H 2008 Appl. Phys. 103 043104

    [18]

    Keller C U, Povel H, Stenflo J O 1994 Proc. SPIE 2265 222

    [19]

    Gandorfer A M, Povel H P, Steiner P 2004 Astron. Astrophys. 422 703

    [20]

    Ramelli R, Balemi S, Bianda M 2010 Proc. SPIE 773 5

    [21]

    Christian T, Schmid H M, Anthony B 2008 Proceedings of Ground-based and Airborne Instrumentation for Astronomy II Marseille, France June 23, 2008 7014 70143F

    [22]

    Diner D J, Davis A B, Hancock B 2007 Appl. Opt. 46 8428

    [23]

    Diner D J, Davis A B, Hancock B 2010 Appl. Opt. 49 2929

    [24]

    Candorfer A M, Povel H P 1997 Astron. Asirophys. 328 381

    [25]

    Stenflo O J 1984 Appl. Opt. 23 1267

    [26]

    Povel H 1995 Opt. Eng. 34 1870

    [27]

    Mahler A B, Chipman R 2011 Proc. SPIE 6676 667601

    [28]

    Kuldkepp M, Hawkes N C, Rachlew E 2005 Appl. Opt. 44 5899

    [29]

    Katrašnik J, Pernuš F, Likar B 2010 Appl. Spectroscopy 64 1265

    [30]

    Theocaris P S, Gdoutos E E 1979 Matrix Theory of Photo Elasticity (Vol.2) (Berlin: Springer-Verlag)

    [31]

    Wei G, Grenville A J, Liu Y W, Shen T H 2008 J. Appl. Phys. 103 043104

    [32]

    Wang B, List J 2005 Proc. SPIE 5888 436

    [33]

    Zhang C M, Liu N, Wu F Q 2010 Acta Phys. Sin. 59 949 (in Chinese) [张淳民, 刘宁, 吴福全 2010 物理学报 59 949]

    [34]

    Wu J F, Zhang C M 2010 Chin. Phys. B 19 034201

    [35]

    Kemp J C 2010 PEM-100 Photoelastic Modulator User Manual (Oregon: Hinds International, Inc.) p77

    [36]

    Kuhn J R, Potter D, Parise B 2001 Astrophys. J. 553 L189

  • [1] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真. 物理学报, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [2] 张宁, 朱京平, 宗康, 李浩, 强帆, 侯洵. 通道调制型偏振成像系统的波段宽度限制判据. 物理学报, 2016, 65(7): 074210. doi: 10.7498/aps.65.074210
    [3] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建. 物理学报, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [4] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [5] 李祺伟, 张淳民, 魏宇童, 陈清颖. 偏振型干涉成像光谱仪中Savart偏光镜通光孔径的研究. 物理学报, 2015, 64(22): 224206. doi: 10.7498/aps.64.224206
    [6] 张松, 谈宜东, 张书练. 激光回馈引起的微片Nd:YAG激光器频差调制. 物理学报, 2014, 63(10): 104208. doi: 10.7498/aps.63.104208
    [7] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [8] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [9] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [10] 祝宝辉, 张淳民, 简小华, 曾文锋. 时空混合调制型偏振干涉成像光谱仪的全视场偏振信息探测研究. 物理学报, 2012, 61(9): 090701. doi: 10.7498/aps.61.090701
    [11] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [12] 张淳民, 朱兰艳. 新型偏振风成像干涉仪中偏振化方向对调制度和干涉强度的影响研究. 物理学报, 2010, 59(2): 989-997. doi: 10.7498/aps.59.989
    [13] 简小华, 张淳民, 祝宝辉, 任文艺. 时空混合调制型偏振干涉成像光谱仪数据处理研究. 物理学报, 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [14] 严新革, 张淳民, 赵葆常. 时空混合调制型偏振干涉成像光谱仪干涉图获取模式研究. 物理学报, 2010, 59(5): 3123-3129. doi: 10.7498/aps.59.3123
    [15] 穆廷魁, 张淳民, 赵葆常. 偏振干涉成像光谱仪中Wollaston棱镜光程差及条纹定位面的精确计算与分析. 物理学报, 2009, 58(6): 3877-3886. doi: 10.7498/aps.58.3877
    [16] 简小华, 张淳民, 祝宝辉, 赵葆常, 杜 娟. 利用偏振干涉成像光谱仪进行偏振探测的新方法. 物理学报, 2008, 57(12): 7565-7570. doi: 10.7498/aps.57.7565
    [17] 刘 欢, 徐德刚, 姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究. 物理学报, 2008, 57(9): 5662-5669. doi: 10.7498/aps.57.5662
    [18] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究. 物理学报, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [19] 孙 博, 姚建铨, 王 卓, 王 鹏. 利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究. 物理学报, 2007, 56(3): 1390-1396. doi: 10.7498/aps.56.1390
    [20] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义. 飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究. 物理学报, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
计量
  • 文章访问数:  6040
  • PDF下载量:  609
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-12
  • 修回日期:  2012-11-13
  • 刊出日期:  2013-03-05

/

返回文章
返回