搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通道调制型偏振成像系统的偏振参量重建

强帆 朱京平 张云尧 张宁 李浩 宗康 曹莹瑜

引用本文:
Citation:

通道调制型偏振成像系统的偏振参量重建

强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜

Reconstruction of polarization parameters in channel modulated polarization imaging system

Qiang Fan, Zhu Jing-Ping, Zhang Yun-Yao, Zhang Ning, Li Hao, Zong Kang, Cao Ying-Yu
PDF
导出引用
  • 通道调制型偏振成像系统中, 焦平面上获取的信息需要通过目标偏振参量的重建才能有效提取, 因而重建是目标识别、材料分析、生物医疗等技术进一步应用的前提. 为了实现在非理想情况下通道调制型偏振成像系统的偏振参量精确重建, 需要解决成像系统中CCD采样频率与频谱位置偏移对重建的影响. 本文首先详细分析了频谱不发生混叠的条件: CCD采样频率应至少为4倍基频; 在偏振干涉频谱位置偏移时, 使用最大频谱法确定各个偏振态的载波频率, 通过频移、滤波和傅里叶变换获得目标的偏振重建二维图像; 最后通过计算机模拟仿真与实验分析结合的方法验证该重建方案的可行性与有效性. 模拟与实验结果表明: 改进后的偏振重建法得到的偏振图像与原始输入图像的均方差在0.001以下, 峰值信噪比有明显的提高, 且结构相似度可达到0.9以上, 表明该方法获得的二维偏振态重建图像精度高, 与理论偏振解调法相比具有很大的优越性. 该工作希望为后续偏振探测与分析进一步的研究提供参考.
    Based on the reconstruction of the polarization parameters in a channel modulating polarization imaging system, the polarization features of the target could be extracted effectively. Considering that the reconstruction of polarization parameters can provide important reference for target recognition, material analysis, remote sensing and bio-medical treatment, the research on accurate reconstruction of polarization parameters is now urgently required. In order to improve the accuracy of polarization parameter reconstruction, we first study the influence of sample frequency of interference fringes on the imaging process. For the same carrier frequency, conjugate spectra are separated and also the spectra are not aliasing for two adjacent spectral lines. It is concluded that to prevent the image spectrum from aliasing, the sample frequency should be at least 4 times the maximum fringe frequency of the polarization interference image. Then we study Stokes parameter reconstruction method when the spectral line positions of interference image are changed by assembling error. Since different Stokes parameters are amplitude modulated at different frequencies, we apply segment filters to split the frequency domain into different regions, and seek for the largest spectrum in corresponding regions. The largest spectrum in different regions can be used to determine the spectral line position of polarization carrier frequency, and the two-dimensional images of the target are rebuilt in sequence by the frequency shifting, spectral filtering, and Fourier inversion transforming. According to the above method, we could obtain an exact polarization rebuilding image when the line position of polarization carrier frequency is modified. Finally, we use the computer simulation and experiment to verify the feasibility and effectiveness of such a rebuilding method. The results demonstrate that the reconstruction of polarization parameters in channel modulating polarization imaging by this rebuilding method is better than by the traditional theoretical rebuilding method. In detail, the mean square error between the reconstruction and original input image could be suppressed to 0.001 while the peak-signal-to-noise ratio is improved and the structural similarity index measurement could be more than 0.9 by utilizing the new rebuilding method. It turns out that the reconstruction method with great superiority can provide a promising reference for further research of channel modulating polarization imaging system.
      通信作者: 朱京平, jpzhu@mail.xjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划和北京石油化工学院光机电装备技术北京市重点实验室开放课题基金(批准号: KF2014-01)资助的课题.
      Corresponding author: Zhu Jing-Ping, jpzhu@mail.xjtu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China, and the Beijing Area Key Laboratory of Opto-Mechatronic Equipment Technology, China (Grant No. KF2014-01).
    [1]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2008 Appl. Opt. 45 5453

    [2]

    Gu X F, Chen X F, Cheng H T, Li Z Q, Yu T, Xie D H, Xu H 2011 Acta Phys. Sin. 60 070702 (in Chinese) [顾行发, 陈兴峰, 程海天, 李正强, 余涛, 谢东海, 许华 2011 物理学报 60 070702]

    [3]

    Awartani O, Kudenov M W 2014 Appl. Phys. Lett. 104 093306

    [4]

    Cao N W, Liu W Q, Zhang Y J 2000 Acta Phys. Sin. 49 61 (in Chinese) [曹念文, 刘文清, 张玉钧 2000 物理学报 49 61]

    [5]

    Egan W G, Johnson W R, Whitehead V S 1991 Appl. Opt. 30 435

    [6]

    Hou J F, Wu T X, Wang D G, Deng Y Y, Zhang Z Y, Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese) [侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿 2015 物理学报 64 060701]

    [7]

    Azzam R 1985 Opt. Lett. 10 309

    [8]

    Pezzaniti J L, Chenault D B 2005 Porc. SPIE 44 515

    [9]

    Andreau A G, Kalayjian Z K 2002 IEEE Sens. J. 2 566

    [10]

    Oka K, Saito N 2006 Proc. SPIE 6295 629508

    [11]

    Luo H, Oka K, Hoog E D, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413

    [12]

    Cao Q, Zhang C, Zhang J, Kang Y 2014 Optik 125 3380

    [13]

    Hu Q Y, Yang W F, Hu Y D, Hong J 2015 Acta Opt. Sin. 35 0211004 (in Chinese) [胡巧云, 杨伟峰, 胡亚东, 洪津 2015 光学学报 35 0211004]

    [14]

    Yan L L, Li H, Qiu J N, Liang P 2015 J. Appl. Opt. 2015 36 58 (in Chinese) [闫乐乐, 李辉, 邱聚能, 梁平 2015 应用光学 36 58

  • [1]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2008 Appl. Opt. 45 5453

    [2]

    Gu X F, Chen X F, Cheng H T, Li Z Q, Yu T, Xie D H, Xu H 2011 Acta Phys. Sin. 60 070702 (in Chinese) [顾行发, 陈兴峰, 程海天, 李正强, 余涛, 谢东海, 许华 2011 物理学报 60 070702]

    [3]

    Awartani O, Kudenov M W 2014 Appl. Phys. Lett. 104 093306

    [4]

    Cao N W, Liu W Q, Zhang Y J 2000 Acta Phys. Sin. 49 61 (in Chinese) [曹念文, 刘文清, 张玉钧 2000 物理学报 49 61]

    [5]

    Egan W G, Johnson W R, Whitehead V S 1991 Appl. Opt. 30 435

    [6]

    Hou J F, Wu T X, Wang D G, Deng Y Y, Zhang Z Y, Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese) [侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿 2015 物理学报 64 060701]

    [7]

    Azzam R 1985 Opt. Lett. 10 309

    [8]

    Pezzaniti J L, Chenault D B 2005 Porc. SPIE 44 515

    [9]

    Andreau A G, Kalayjian Z K 2002 IEEE Sens. J. 2 566

    [10]

    Oka K, Saito N 2006 Proc. SPIE 6295 629508

    [11]

    Luo H, Oka K, Hoog E D, Kudenov M, Schiewgerling J, Dereniak E L 2008 Appl. Opt. 47 4413

    [12]

    Cao Q, Zhang C, Zhang J, Kang Y 2014 Optik 125 3380

    [13]

    Hu Q Y, Yang W F, Hu Y D, Hong J 2015 Acta Opt. Sin. 35 0211004 (in Chinese) [胡巧云, 杨伟峰, 胡亚东, 洪津 2015 光学学报 35 0211004]

    [14]

    Yan L L, Li H, Qiu J N, Liang P 2015 J. Appl. Opt. 2015 36 58 (in Chinese) [闫乐乐, 李辉, 邱聚能, 梁平 2015 应用光学 36 58

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 陈星宇, 周昕, 白星, 余展, 王玉杰, 李欣家, 刘洋, 孙铭泽. 傅里叶鬼成像与正弦鬼成像的等价性分析. 物理学报, 2023, 72(14): 144202. doi: 10.7498/aps.72.20222317
    [3] 孙昇, 王超, 史浩东, 付强, 李英超. 分孔径离轴同时偏振超分辨率成像光学系统像差校正. 物理学报, 2022, 71(21): 214201. doi: 10.7498/aps.71.20220946
    [4] 周萧溪, 胡传灯, 陆伟新, 赖耘, 侯波. 外尔超构材料里频率分离外尔点的数值设计. 物理学报, 2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
    [5] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较. 物理学报, 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [6] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠. 分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析. 物理学报, 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [7] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏. 多尺度水下偏振成像方法. 物理学报, 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [8] 张雷雷, 唐立金, 张慕阳, 梁艳梅. 对称照明在傅里叶叠层成像中的应用. 物理学报, 2017, 66(22): 224201. doi: 10.7498/aps.66.224201
    [9] 李浩, 朱京平, 张宁, 张云尧, 强帆, 宗康. 半波片角度失配对通道调制型偏振成像效果的影响及补偿. 物理学报, 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [10] 许洁, 刘飞, 刘杰涛, 王娇阳, 韩平丽, 周淙浩, 邵晓鹏. 基于渥拉斯顿棱镜的单路实时偏振成像系统设计. 物理学报, 2016, 65(13): 134201. doi: 10.7498/aps.65.134201
    [11] 刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰. 考虑探测器特性的光电偏振成像系统偏振信息重构方法. 物理学报, 2016, 65(9): 094201. doi: 10.7498/aps.65.094201
    [12] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析. 物理学报, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [13] 侯俊峰, 吴太夏, 王东光, 邓元勇, 张志勇, 孙英姿. 分时偏振成像系统中光束偏离的补偿方法研究. 物理学报, 2015, 64(6): 060701. doi: 10.7498/aps.64.060701
    [14] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [15] 陈明惠, 丁志华, 王成, 宋成利. 基于法布里-珀罗调谐滤波器的傅里叶域锁模扫频激光光源. 物理学报, 2013, 62(6): 068703. doi: 10.7498/aps.62.068703
    [16] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [17] 康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩. 亚波长金属线栅的设计、制备及偏振成像实验研究. 物理学报, 2011, 60(1): 014218. doi: 10.7498/aps.60.014218
    [18] 吕子峰, 郝吉明, 李俊华, 武山. 团簇状碳黑颗粒在丙烯臭氧氧化和光氧化体系中的重构. 物理学报, 2009, 58(1): 662-668. doi: 10.7498/aps.58.662
    [19] 徐涵, 常文蔚, 银燕. 尾波场中传播的激光脉冲的频率漂移. 物理学报, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
    [20] 沈建其, 庄 飞. 双轴螺旋向性负材料中极化光波的左-右旋偏振耦合. 物理学报, 2004, 53(6): 2000-2004. doi: 10.7498/aps.53.2000
计量
  • 文章访问数:  6501
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-29
  • 修回日期:  2016-03-01
  • 刊出日期:  2016-07-05

/

返回文章
返回