Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative phase microscopy imaging based on fractional spiral phase plate

Wu Di Jiang Zi-Zhen Yu Huan-Huan Zhang Chen-Shuang Zhang Jiao Lin Dan-Ying Yu Bin Qu Jun-Le

Citation:

Quantitative phase microscopy imaging based on fractional spiral phase plate

Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le
PDF
HTML
Get Citation
  • Quantitative phase imaging (QPI), which combines phase imaging with optical microscopy technology, provides a marker-free, fast, non-destructive, and high-resolution imaging method for observing transparent biological samples. It is widely used in life science, biomedicine, etc. As an emerging QPI technology, spiral phase contrast microscopy (SPCM) uses a spiral phase filter to achieve edge enhancement of amplitude or phase objects. Using the multi-step phase-shifting technology, a complex sample can be measured quantitatively, which has the advantages of high stability, high sensitivity and high precision. However, the SPCM requires at least three-step phase-shifted spiral phase filtered images to achieve the quantitative reconstruction of the amplitude and phase of a sample, and the image acquisition process and the reconstruction process are relatively complicated, which require high stability of system, and the SPCM has low temporal resolution. In order to further improve the performance of SPCM and increase the system stability, sensitivity and temporal resolution, in this paper a quantitative phase imaging method and system based on a fractional spiral phase plate is proposed. Through a sample intensity image filtered by a fractional spiral phase plate, the modified Gerchberg-Saxton iterative phase retrieval algorithm is used to quantitatively reconstruct the phase of a pure phase sample, which simplifies the experimental process and phase reconstruction steps of spiral phase contrast microsocopy. In the computer simulation experiments, the phase imaging process and the reconstruction process of spiral phase plates based on different topological charges are studied, the feasibility of which is analyzed. Finally, through imaging and phase reconstruction of the phase grating and biological cell sample, it is verified that the phase contrast microscopy method based on the fractional spiral phase plate can effectively improve the contrast of spiral phase contrast microscopy and can obtain a quantitative reconstruciton of a weak phase object. The phase information of a sample has significance in research and application for developing the spiral phase contrast microscopy.
      Corresponding author: Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975131, 61775144, 61835009) and the Basic Research Project of Shenzhen, China (Grant Nos. JCYJ20200109105411133, JCYJ20170412105003520, JCYJ20180305125649693)
    [1]

    Park Y, Depeursinge C, Popescu G 2018 Nat. Photonics 12 578Google Scholar

    [2]

    Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165Google Scholar

    [3]

    Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T, Depeursinge C 2005 Opt. Lett. 30 468Google Scholar

    [4]

    Warger W C, DiMarzio C A 2009 Opt. Express 17 2400Google Scholar

    [5]

    Zicha D, Dunn G A 1995 J. Microsc.-Oxford 179 11Google Scholar

    [6]

    Popescu G, Deflores L P, Vaughan J C, Badizadegan K, Iwai H, Dasari R R, Feld M S 2004 Opt. Lett. 29 2503Google Scholar

    [7]

    Popescu G, Ikeda T, Dasari R R, Feld M S 2006 Opt. Lett. 31 775Google Scholar

    [8]

    Barty A, Nugent K A, Paganin D, Roberts A 1998 Opt. Lett. 23 817Google Scholar

    [9]

    Wang Z, Millet L, Mir M, Ding H F, Unarunotai S, Rogers J, Gillette M U, Popescu G 2011 Opt. Express 19 1016Google Scholar

    [10]

    Ding H F, Wang Z, Nguyen F, Boppart S A, Popescu G 2008 Phys. Rev. Lett. 101 238102Google Scholar

    [11]

    Davis J A, McNamara D E, Cottrell D M, Campos J 2000 Opt. Lett. 25 99Google Scholar

    [12]

    Crabtree K, Davis J A, Moreno I 2004 Appl. Opt. 43 1360Google Scholar

    [13]

    Swartzlander G A 2001 Opt. Lett. 26 497Google Scholar

    [14]

    刘婷婷, 洪正平, 国承山 2008 光电子·激光 19 96Google Scholar

    Liu T T, Hong Z P, Guo C S 2008 J. Optoelectron.·Laser 19 96Google Scholar

    [15]

    Furhapter S, Jesacher A, Bernet S, Ritsch-Marte M 2005 Opt. Lett. 30 1953Google Scholar

    [16]

    Wang J, Zhang W, Qi Q, Zheng S, Chen L 2015 Sci. Rep. 5 15826Google Scholar

    [17]

    顾忠政, 殷达, 聂守平, 冯少彤, 邢芳俭, 马骏, 袁操今 2019 红外与激光工程 48 0603015Google Scholar

    Gu Z Z, Yin D, Nie S P, Feng S T, Xing F J, Ma J, Yuan C J 2019 Infrared Laser Eng. 48 0603015Google Scholar

    [18]

    Situ G, Pedrini G, Osten W 2009 J. Opt. Soc. Am. A: 26 1788Google Scholar

    [19]

    Hai N, Rosen J 2020 Opt. Lett. 45 5812Google Scholar

    [20]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [21]

    周意 2017 硕士学位论文 (南京: 南京师范大学)

    Zhou Y 2017 M. S. Thesis (Nanjing: Nanjing Normal University) (in Chinese)

    [22]

    黄妙娜, 黄佐华 2009 大学物理 28 6Google Scholar

    Huang M N, Huang Z H 2009 Coll. Phys. 28 6Google Scholar

  • 图 1  基于4f系统的螺旋相衬成像系统示意图

    Figure 1.  Schematic diagram of 4f system-based spiral phase contrast imaging system.

    图 2  SGSA框图

    Figure 2.  Block diagram of the SGSA.

    图 3  分数阶拓扑荷取0.1时, SSE随迭代次数的变化曲线

    Figure 3.  SSE error vs. the number of iterations when the fractional topological charge is 0.1.

    图 4  恢复相位与真实相位之间的MSE随迭代次数的变化曲线

    Figure 4.  MSE error between the recovered phase image and ground truth phase image vs. the number of iterations.

    图 5  螺旋相位滤波成像及恢复结果对比 (a) 相位型样品原图; (b) 传统整数阶螺旋相位片滤波图像; (c) 对图(b)用SGSA恢复的样品相位图; (d) 分数阶螺旋相位片滤波图像; (e) 对图(d)用SGSA恢复的样品相位图

    Figure 5.  Comparisons of the recorded images and the recovered results: (a) The ground truth phase sample image; (b) the recorded image via traditional integer order spiral phase plate filtering; (c) the recovered phase sample image using SGSA for panel (b); (d) the recorded image via fractional spiral phase plate filtering; (e) the recovered phase sample image using SGSA for panel (d).

    图 6  分数拓扑荷l取不同值时的直接相位成像结果 $\left( {\rm{a}} \right)\;l = 1$; $\left( {\rm{b}} \right)\;l = {\rm{0}}.{\rm{8}}$; $\left( {\rm{c}} \right)\;l = {\rm{0}}.{\rm{6}}$; $\left( {\rm{d}} \right)\;l = {\rm{0}}.{\rm{5}}$; $\left( {\rm{e}} \right)\;l = {\rm{0}}.{\rm{4}}$; $\left( {\rm{f}} \right)\;l = {\rm{0}}.{\rm{2}}$; $\left( {\rm{g}} \right)\;l = {\rm{0}}.1$; $\left( {\rm{h}} \right)\;l = {\rm{0}}.{\rm{08}}$

    Figure 6.  Direct phase imaging results for different fractional topological charge l : $\left( {\rm{a}} \right)\;l = 1{{ ;}}$ $\left( {\rm{b}} \right)\;l = {\rm{0}}.{{8 ;}}$ $\left( {\rm{c}} \right)\;l = {\rm{0}}.{{6 ;}}$ $\left( {\rm{d}} \right)\;l = {\rm{0}}.{{5 ;}}$ $\left( {\rm{e}} \right)\;l = {\rm{0}}.{\rm{4}}$; $\left( {\rm{f}} \right)\;l = {\rm{0}}.{\rm{2}}$; $\left( {\rm{g}} \right)\;l = {\rm{0}}.1$; $\left( {\rm{h}} \right)\;l = {\rm{0}}.{\rm{08}}$.

    图 7  不同拓扑荷值恢复结果对比 (a) 拓扑荷取0.1时经SGSA恢复出的相位图; (b) 拓扑荷取0.08时经SGSA恢复出的相位图

    Figure 7.  Comparisons of the recovered results for different topologies: (a) The reovered phase image using SGSA when the topology is 0.1; (b) the revoverd phase image using SGSA when the topology is 0.08.

    图 8  (a) 相位型闪耀光栅; (b) 螺旋相位片; (c) 复合螺旋相位图

    Figure 8.  (a) Phase-type blazed grating; (b) spiral phase plate; (c) composite spiral phase plate.

    图 9  (a) 基于螺旋相位片滤波的定量相位成像系统光路图; (b) SLM上加载的整数阶叉形光栅; (c) SLM上加载的分数阶叉形光栅

    Figure 9.  (a) Optical setup of quantitative phase imaging system based on a spiral phase filter; (b) the integer order fork grating loaded on SLM; (c) the fractional fork grating loaded on SLM.

    图 10  定制相位型光栅的成像 (a) 相位型光栅未滤波明场强度图; (b) 整数阶螺旋相位片滤波成像边缘增强图; (c) 恢复相位图; (d) 恢复深度图, 横纵坐标数值为像素值, 每个像素代表0.325 μm, 总长度为332.8 μm

    Figure 10.  Imaging of a custom phase gratinig: (a) The unfiltered bright field image of the phase grating; (b) the recorded integer-order spiral phase filtered edge enhancement image; (c) the recovered phase image; (d) the recovered depth image, the abscissa and ordinate values are pixel values, each pixel represents 0.325 μm, and the total length is 332.8 μm.

    图 11  经整数阶螺旋相位片滤波后再由SGSA重构的相位型光栅SSE随迭代次数的变化

    Figure 11.  SSE error vs. the number of iterations for the grating phase reconstruction problem of phase retrieval from a integer-order spiral phase filtering intensity measurement using the SGSA.

    图 12  定制相位型光栅的成像 (a) 相位型光栅未滤波明场强度图; (b) 拓扑荷l取0.1时分数阶螺旋相位片滤波成像强度图; (c) 恢复相位图; (d) 恢复深度图(坐标同图10(d))

    Figure 12.  Imaging of a custom phase grating: (a) The unfiltered phase grating bright field image; (b) the fractional spiral phase plate filtered image when the topological charge l is 0.1; (c) the recovered phase image; (d) the recovered depth image (the coordinates are the same as Fig. 10. (d)).

    图 13  经分数阶螺旋相位片滤波后再由SGSA重构的相位光栅SSE随迭代次数的变化

    Figure 13.  SSE error vs. the number of iterations for the grating phase reconstruction problem of phase retrieval from a fractional spiral phase filtering intensity measurement using the SGSA.

    图 14  SH-SY5Y细胞成像 (a) SH-SY5Y细胞未滤波明场强度图; (b) 拓扑荷l取0.1时分数阶螺旋相位片滤波神经元细胞成像强度图; (c) 恢复相位图; (d) 定量相移图(坐标同图10(d))

    Figure 14.  SH-SY5Y cell imaging: (a) The unfiltered SH-SY5Y cell bright field image; (b) the intensity image of the neuron cell using the fractional spiral phase filter when the topological charge l is 0.1; (c) the recoverd phase image; (d) the quantitative phase image (the coordinates are the same as Fig. 10. (d)).

    图 15  SH-SY5Y细胞经分数阶螺旋相位滤波后再由SGSA重建的SSE随迭代次数的变化

    Figure 15.  SSE error vs. the number of iterations for the SH-SY5Y cells reconstruction problem of phase retrieval from a fractional spiral phase filtering intensity measurement using the SGSA.

    表 1  三种分数拓扑荷下恢复相位图与原图的SSIM值

    Table 1.  The SSIM between the recovered phase image and the ground truth phase image for three fractional topological values.

    拓扑荷取值SSIM
    1.00.1918
    0.10.4394
    0.080.2034
    DownLoad: CSV
  • [1]

    Park Y, Depeursinge C, Popescu G 2018 Nat. Photonics 12 578Google Scholar

    [2]

    Ikeda T, Popescu G, Dasari R R, Feld M S 2005 Opt. Lett. 30 1165Google Scholar

    [3]

    Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T, Depeursinge C 2005 Opt. Lett. 30 468Google Scholar

    [4]

    Warger W C, DiMarzio C A 2009 Opt. Express 17 2400Google Scholar

    [5]

    Zicha D, Dunn G A 1995 J. Microsc.-Oxford 179 11Google Scholar

    [6]

    Popescu G, Deflores L P, Vaughan J C, Badizadegan K, Iwai H, Dasari R R, Feld M S 2004 Opt. Lett. 29 2503Google Scholar

    [7]

    Popescu G, Ikeda T, Dasari R R, Feld M S 2006 Opt. Lett. 31 775Google Scholar

    [8]

    Barty A, Nugent K A, Paganin D, Roberts A 1998 Opt. Lett. 23 817Google Scholar

    [9]

    Wang Z, Millet L, Mir M, Ding H F, Unarunotai S, Rogers J, Gillette M U, Popescu G 2011 Opt. Express 19 1016Google Scholar

    [10]

    Ding H F, Wang Z, Nguyen F, Boppart S A, Popescu G 2008 Phys. Rev. Lett. 101 238102Google Scholar

    [11]

    Davis J A, McNamara D E, Cottrell D M, Campos J 2000 Opt. Lett. 25 99Google Scholar

    [12]

    Crabtree K, Davis J A, Moreno I 2004 Appl. Opt. 43 1360Google Scholar

    [13]

    Swartzlander G A 2001 Opt. Lett. 26 497Google Scholar

    [14]

    刘婷婷, 洪正平, 国承山 2008 光电子·激光 19 96Google Scholar

    Liu T T, Hong Z P, Guo C S 2008 J. Optoelectron.·Laser 19 96Google Scholar

    [15]

    Furhapter S, Jesacher A, Bernet S, Ritsch-Marte M 2005 Opt. Lett. 30 1953Google Scholar

    [16]

    Wang J, Zhang W, Qi Q, Zheng S, Chen L 2015 Sci. Rep. 5 15826Google Scholar

    [17]

    顾忠政, 殷达, 聂守平, 冯少彤, 邢芳俭, 马骏, 袁操今 2019 红外与激光工程 48 0603015Google Scholar

    Gu Z Z, Yin D, Nie S P, Feng S T, Xing F J, Ma J, Yuan C J 2019 Infrared Laser Eng. 48 0603015Google Scholar

    [18]

    Situ G, Pedrini G, Osten W 2009 J. Opt. Soc. Am. A: 26 1788Google Scholar

    [19]

    Hai N, Rosen J 2020 Opt. Lett. 45 5812Google Scholar

    [20]

    Fienup J R 1982 Appl. Opt. 21 2758Google Scholar

    [21]

    周意 2017 硕士学位论文 (南京: 南京师范大学)

    Zhou Y 2017 M. S. Thesis (Nanjing: Nanjing Normal University) (in Chinese)

    [22]

    黄妙娜, 黄佐华 2009 大学物理 28 6Google Scholar

    Huang M N, Huang Z H 2009 Coll. Phys. 28 6Google Scholar

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Qi Nai-Jie, He Xiao-Liang, Wu Li-Qing, Liu Cheng, Zhu Jian-Qiang. Effect of detector photoelectric parameters on ptychographic iterative engine. Acta Physica Sinica, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [3] Wang Zi-Shuo, Liu Lei, Liu Chen-Bo, Liu Ke, Zhong Zhi, Shan Ming-Guang. Fast phase unwrapping using digital differentiation-integration method. Acta Physica Sinica, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [4] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [5] Shan Ming-Guang, Liu Xiang-Yu, Pang Cheng, Zhong Zhi, Yu Lei, Liu Bin, Liu Lei. Off-axis digital holographic decarrier phase recovery algorithm combined with linear regression. Acta Physica Sinica, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [6] Precise phase retrieval with carrier removal from single off-axis hologram by linear regression. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211509
    [7] Zhou Jing, Zhang Xiao-Fang, Zhao Yan-Geng. Phase retrieval wavefront sensing based on image fusion and convolutional neural network. Acta Physica Sinica, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [8] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [9] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [10] Li Yuan-Jie, He Xiao-Liang, Kong Yan, Wang Shou-Yu, Liu Cheng, Zhu Jian-Qiang. Shearing interferometric electron beam imaging based on ptychographic iterative engine method. Acta Physica Sinica, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [11] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [12] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Niu Han-Ben. Generation of dark hollow beams used in sub-diffraction-limit imaging in coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [13] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [14] Liu Hong-Zhan, Ji Yue-Feng. An ameliorated fast phase retrieval iterative algorithm based on the angular spectrum theory. Acta Physica Sinica, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [15] Yang Zhen-Ya, Zheng Chu-Jun. Phase retrieval of pure phase object based on compressed sensing. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [16] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [17] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [18] Liu Hui-Qiang, Ren Yu-Qi, Zhou Guang-Zhao, He You, Xue Yan-Ling, Xiao Ti-Qiao. Investigation on the application of phase-attenuation duality to X-ray mixed contrast quantitative micro-tomography. Acta Physica Sinica, 2012, 61(7): 078701. doi: 10.7498/aps.61.078701
    [19] Huang Yan-Ping, Qi Chun-Yuan. Measurement of refractive index profile of holey fiber using quantitative phase tomography. Acta Physica Sinica, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  5532
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2020
  • Accepted Date:  22 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回