Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of detector photoelectric parameters on ptychographic iterative engine

Qi Nai-Jie He Xiao-Liang Wu Li-Qing Liu Cheng Zhu Jian-Qiang

Citation:

Effect of detector photoelectric parameters on ptychographic iterative engine

Qi Nai-Jie, He Xiao-Liang, Wu Li-Qing, Liu Cheng, Zhu Jian-Qiang
PDF
HTML
Get Citation
  • An analytical solution model for ptychographic iterative engine (PIE) is proposed. In this model, PIE can be described as a system of linear equations between the sample and the illumination in the frequency domain. This system of linear equations ( AX = B ) is derived with the spectrum of the illumination as the coefficient ( A ), the spectrum of the sample as the unknown ( X ), and the intensity of the diffraction pattern as the vector ( B ). Hence, the sample can be recovered by solving this linear system. In PIE, the detector (such as Pike F-100, AVT) has a large resolution, meaning that 1000 × 1000 linear equations can be generated by recording a single pattern. It is still the case, however, that the number of obtained equations is smaller than the number of unknowns, leading to the inability to obtain a unique solution about the sample. Relative motions of sample and illumination, can generate more diffraction patterns to construct a sufficient number of linear independent equations. For coefficient ( A ), since the initial illumination is known, the illumination after shifting can still be obtained by recording its shifting distance. Hence the unique solution for the sample can be directly obtained by solving this linear independent system of equations. Simultaneously, the photoelectric parameters of the detector have a significant influence on the imaging quality of PIE. Using this linear system, the photoelectric parameters of the detector can be characterized by the number of linear equations and unknowns in each equation. According to the conditions that there is a unique solution in the system of equations and the requirements of the photoelectric parameters (such as pixel sampling interval, width of target surface, pixel size, sensitivity and dynamic range), the influence of the reconstruction for PIE is quantified theoretically. Obviously, the numerical simulation results based on this theory not only verify the correctness of the theoretical analysis and predictions, but also reveal the physical mechanism of recovering high-quality results in imperfect photoelectric parameters of detector, which can contribute to improving the quality of their reconstruction and optimizing the experimental setup.
      Corresponding author: Liu Cheng, chengliu@siom.ac.cn
    [1]

    Guo Y, Han H Y, Wang L W, Zhu Y R, Gao X W, Yang Z G, Weng X Y, Yan W, Qu J L 2022 Appl. Phys. Lett. 121 023701Google Scholar

    [2]

    Wang Z, Zheng W, Hsu C Y S, Huang Z W 2015 Appl. Phys. Lett. 106 033701Google Scholar

    [3]

    Fiolka R, Shao L, Rego E H, Davidson M W, Gustafsson M G L 2012 Proc. Natl. Acad. Sci. 109 5311Google Scholar

    [4]

    Smith H I 1995 J. Vac. Sci. Technol. B 13 2323Google Scholar

    [5]

    Wu S R, Hwu Y, Margaritondo G 2012 Materials 5 1752Google Scholar

    [6]

    蒋晖, 李爱国 2022 光学学报 42 1134004Google Scholar

    Jiang H, Li A G 2022 Acta Opt. Sin. 42 1134004Google Scholar

    [7]

    Roels J, Aelterman J, Luong H Q, Lippens S, Pizurica A, Saeys Y, Philips W 2018 J. Microsc.-Oxford 271 239Google Scholar

    [8]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [9]

    Fienup J R 1982 Appl. Optics 21 2758Google Scholar

    [10]

    Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar

    [11]

    Rau C, Wagner U, Pesic Z, De Fanis A 2011 Phys. Status Solidi A 208 2522Google Scholar

    [12]

    周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼 2020 物理学报 69 034102Google Scholar

    Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Liu K, Hua W Q, Wang Y Z, Bian F G, Wang J 2020 Acta Phys. Sin. 69 034102Google Scholar

    [13]

    Fienup J R, Wackerman C C 1986 J. Opt. Soc. Am. A 3 1897Google Scholar

    [14]

    Faulkner H, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903Google Scholar

    [15]

    Rodenburg J M, Faulkner H 2004 Appl. Phys. Lett. 85 4795Google Scholar

    [16]

    Sha H Z, Cui J Z, Yu R 2022 Sci. Adv. 8 2275Google Scholar

    [17]

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstril M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G, Muller D A 2021 Science 372 826Google Scholar

    [18]

    Jiang S W, Guo C F, Bian Z C, Wang R H, Zhu J K, Song P M, Hu P, Hu D, Zhang Z B, Hoshino K, Feng B, Zheng G A 2022 Biosens. Bioelectron. 196 113699Google Scholar

    [19]

    Wang T B, Jiang S W, Song P M, Wang R H, Yang L M, Zhang T, Zheng G A 2023 Biomed. Opt. Express 14 489Google Scholar

    [20]

    Wise A M, Weker J N, Kalirai S, Farmand M, Shapiro D A, Meirer F, Weckhuysen B M 2016 ACS Catal. 6 2178Google Scholar

    [21]

    Claus D, Maiden A M, Zhang F C, Sweeney F G R, Humphry M J, Schluesener H, Rodenburg J M 2012 Opt. Express 20 9911Google Scholar

    [22]

    Cheng B, Zhang X J, Liu C, Zhu J Q 2019 J. Optics-UK 21 065602Google Scholar

    [23]

    Zong B M, Luan J Y, Jiang Z L, Kong Y, Wang S Y, Liu C 2019 Opt. Eng. 58 054102Google Scholar

    [24]

    Dong X, Pan X C, Liu C, Zhu J Q 2019 High Power Laser Sci. 7 03000e48Google Scholar

    [25]

    Humphry M, Kraus B, Hurst A, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730Google Scholar

    [26]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506Google Scholar

    [27]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227Google Scholar

    [28]

    Lorenzo V, Thomas F, Peter Z, Erwin H 2018 Opt. Lett. 43 543Google Scholar

    [29]

    Xu Y M, Pan X C, Sun M Y, Liu W F, Liu C, Zhu J Q 2022 Photonics Res. 10 1937Google Scholar

    [30]

    Lu C C, Zhou Y, Guo Y X, Jiang S W, Zhang Z B, Zheng G A, Zhong J G 2021 Opt. Express 29 12491Google Scholar

    [31]

    Li M, Bian L H, Zheng G A, Maiden A, Liu Y, Li Y M, Suo J L, Dai Q H, Zhang J 2021 Opt. Lett. 46 1624Google Scholar

    [32]

    Shi Q S, Zhou W Y, Hui W W, Huang K C, Zhao H Y, Tian J G 2018 Opt. Eng. 57 114104Google Scholar

    [33]

    Sinha A, Lee J, Li S, Barbastathis G 2017 Optica 4 1117Google Scholar

    [34]

    He X L, Pan X C, Tao H, Liu C, Zhu J Q 2022 AIP Adv. 12 065225Google Scholar

    [35]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

    [36]

    Zhang F C, Peterson I, Vila-Comamala J, Berenguer A D F, Bean R, Chen B, Menzel A, Robinson I K, Rodenburg J M 2013 Opt. Express 21 13592Google Scholar

    [37]

    Edo T B, Zhang F C, Rodenburg J M 2010 Proc. SPIE 7729 77291HGoogle Scholar

    [38]

    王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇 2017 物理学报 66 094201Google Scholar

    Wang L, Dou J T, Ma J, Yuan C J, Gao Z S, Wei C, Zhang T Y 2017 Acta Phys. Sin. 66 094201Google Scholar

    [39]

    Wan M, Healy J J, Sheridan J T 2020 Opt. Laser. Technol. 122 105859Google Scholar

    [40]

    Liu C, Eschen W, Loetgering L, Molina D S P, Klas R, Iliou A, Steinert M, Herkersdorf S, Kirsche A, Thomas P, Hillmann F, Limpert J, Rothhardt J 2023 PhotoniX 4 1Google Scholar

    [41]

    Thibault P, Menzel A 2013 Nature 494 68Google Scholar

    [42]

    Batey D J, Edo T B, Rau C, Wagner U, Pešić Z D, Waigh T A, Rodenburg J M 2014 Phys. Rev. A 89 043812Google Scholar

    [43]

    Maiden A M, Humphry M J, Zhang F C, Rodenburg J M 2011 J. Opt. Soc. Am. A 28 604Google Scholar

    [44]

    Boyle W S, Smith G E 1970 Bell Labs Tech. J. 49 587Google Scholar

    [45]

    Fossum E R 1997 IEEE T. Electron Dev. 44 1689Google Scholar

    [46]

    Pan X C, Veetil S P, Wang B S, Liu C, Zhu J Q 2015 J. Mod. Optic. 62 1270Google Scholar

  • 图 1  PIE成像的示意图

    Figure 1.  Diagram of the setup for PIE.

    图 2  待测样品的(a)振幅和(b)相位分布; 照明光的(c)振幅和(d)相位分布; (e)所记录的其中一个衍射光斑强度图; (f)重建迭代收敛曲线; 重建样品的(g)振幅和(h)相位分布

    Figure 2.  (a) Amplitude and (b) phase of sample; (c) amplitude and (d) phase of illumination; (e) one of recorded diffraction patterns; (f) iterative convergence curve of reconstruction; (g) amplitude and (h) phase of recovered sample.

    图 3  相干衍射成像中照明光与样品的频域卷积示意图

    Figure 3.  Diagram of frequency domain convolution of illumination with sample in coherent diffraction imaging.

    图 4  采样间隔为3时, 衍射光斑与探测器靶面像元分布示意图

    Figure 4.  Diagram of diffraction pattern and detector target surface pixel plane undersampling (sampling interval of 3).

    图 5  (a)照明光的频谱分布; (b)样品和照明光频谱交叠计算的示意图; (c)所记录的其中一组衍射光斑; (d)重建出的样品频谱分布; (e)和(f)分别为重建样品振幅和相位; (g)—(i)在探测器左上角($ \text{11×11} $个像素)中不同采样间隔条件下探测器像元分布, 其采样间隔分别为1, 2, 11

    Figure 5.  (a) Spectrum of illumination; (b) diagram of overlapping calculation in sample and illumination spectrum; (c) one of recorded diffraction patterns; (d) distribution of recovered sample spectrum; (e) amplitude and (f) phase of recovered sample; (g)–(i) distribution of pixels on top left corner of detector ($ \text{11×11} $ pixels) with sampling intervals of 1, 2, 11, respectively.

    图 6  衍射光斑分布与探测器像元尺寸示意图(Q = 2)

    Figure 6.  Diagram of diffraction pattern and detector pixel size (Q = 2).

    图 7  (a)理想采样时记录的衍射光斑; (b)发生欠采样时记录的衍射光斑; (c)和(d)分别为理想采样数据重建出的待测样品振幅和相位; (e)和(f)分别为欠采样数据重建出的待测样品振幅和相位

    Figure 7.  (a) Diffraction patterns with optimal sampling recording; (b) diffraction patterns with undersampling recording; (c) amplitude and (d) phase of recovered sample from optimal sampling data; (e) amplitude and (f) phase of recovered sample from undersampling data.

    图 8  衍射光斑分布与探测器靶面宽度示意图

    Figure 8.  Diagram of diffraction pattern and width of detector target surface.

    图 9  (a)探测器靶面上其中一个衍射光斑; (b)探测器所记录的其中一个衍射光斑; (c)待测样品的频谱分布; (d)重建出的样品频谱分布; (e)和(f)分别为重建出的样品振幅和相位; (g)和(h)分别为重建结果与原始分布的振幅和相位差(单位: rad)

    Figure 9.  (a) One of diffraction patterns on detector target surface; (b) one of diffraction patterns recorded by the detector; (c) initial spectrum of sample; (d) recovered spectrum of sample; (e) amplitude and (f) phase of recovered sample; differences of (g) amplitude and (h) phase between recovered results and initial distribution (unit: rad).

    图 10  (a)数值模拟中的样品频谱分布; (b)所记录的其中一组衍射光斑; (c)重建出的样品频谱分布; (d)重建出的样品振幅; (e)重建相位与原始相位的相位差(单位: rad). 其中, (e1), (e2)和(e4)使用有效频谱宽度为11×11个像素的照明光照明, (e3)使用有效频谱宽度为5×5个像素的照明光照明, 其对应光强及频谱分布分别展示在(a)和(b)中的小插图中. 另外, 在样品频谱(a1)—(a4)中强度较大点之间的距离分别为20, 10, 10, 10 (像素)

    Figure 10.  (a) Spectrum of sample in numerical simulations; (b) one of recorded diffraction patterns; (c) recovered spectrum of sample; (d) recovered amplitude of sample; (e) differences of phase between recovered and initial (unit: rad). In (a1)–(a4), distances of adjacent extreme points are 20, 10, 10, 10 pixels, respectively. An illumination, adopted in (e1), (e2) and (e4), has a valid spectrum with 11×11 pixels, which are shown in (a) and (b). An illumination, adopted in (e3), has a valid spectrum with 5×5 pixels, which are shown in (a) and (b).

    图 11  (a)当边缘零值区域的宽度(W1)大于$\lambda z{W}_{{\widetilde{\boldsymbol{p}}}'}$时, 探测器所记录的其中一组衍射光斑强度图; (b)当边缘零值区域的宽度(W1)小于$ \lambda z{W}_{{\widetilde{\boldsymbol{p}}}'} $时, 探测器所记录的其中一组衍射光斑强度图; (c)和(e)分别为使用(a)中的数据重建出的振幅和相位分布; (d)和(f)分别使用(b)中的数据重建出的振幅和相位分布

    Figure 11.  (a) One of diffraction patterns recorded by detector when the width of the invalid region (W1) is larger than $ \lambda z{W}_{{\widetilde{\boldsymbol{p}}}'} $; (b) one of the diffraction patterns recorded by the detector when the width of the invalid region (W1) is smaller than $ \lambda z{W}_{{\widetilde{\boldsymbol{p}}}'} $; (c) amplitude and (e) phase recovered with (a); (d) amplitude and (f) phase recovered with (b).

  • [1]

    Guo Y, Han H Y, Wang L W, Zhu Y R, Gao X W, Yang Z G, Weng X Y, Yan W, Qu J L 2022 Appl. Phys. Lett. 121 023701Google Scholar

    [2]

    Wang Z, Zheng W, Hsu C Y S, Huang Z W 2015 Appl. Phys. Lett. 106 033701Google Scholar

    [3]

    Fiolka R, Shao L, Rego E H, Davidson M W, Gustafsson M G L 2012 Proc. Natl. Acad. Sci. 109 5311Google Scholar

    [4]

    Smith H I 1995 J. Vac. Sci. Technol. B 13 2323Google Scholar

    [5]

    Wu S R, Hwu Y, Margaritondo G 2012 Materials 5 1752Google Scholar

    [6]

    蒋晖, 李爱国 2022 光学学报 42 1134004Google Scholar

    Jiang H, Li A G 2022 Acta Opt. Sin. 42 1134004Google Scholar

    [7]

    Roels J, Aelterman J, Luong H Q, Lippens S, Pizurica A, Saeys Y, Philips W 2018 J. Microsc.-Oxford 271 239Google Scholar

    [8]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [9]

    Fienup J R 1982 Appl. Optics 21 2758Google Scholar

    [10]

    Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar

    [11]

    Rau C, Wagner U, Pesic Z, De Fanis A 2011 Phys. Status Solidi A 208 2522Google Scholar

    [12]

    周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼 2020 物理学报 69 034102Google Scholar

    Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Liu K, Hua W Q, Wang Y Z, Bian F G, Wang J 2020 Acta Phys. Sin. 69 034102Google Scholar

    [13]

    Fienup J R, Wackerman C C 1986 J. Opt. Soc. Am. A 3 1897Google Scholar

    [14]

    Faulkner H, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903Google Scholar

    [15]

    Rodenburg J M, Faulkner H 2004 Appl. Phys. Lett. 85 4795Google Scholar

    [16]

    Sha H Z, Cui J Z, Yu R 2022 Sci. Adv. 8 2275Google Scholar

    [17]

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstril M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G, Muller D A 2021 Science 372 826Google Scholar

    [18]

    Jiang S W, Guo C F, Bian Z C, Wang R H, Zhu J K, Song P M, Hu P, Hu D, Zhang Z B, Hoshino K, Feng B, Zheng G A 2022 Biosens. Bioelectron. 196 113699Google Scholar

    [19]

    Wang T B, Jiang S W, Song P M, Wang R H, Yang L M, Zhang T, Zheng G A 2023 Biomed. Opt. Express 14 489Google Scholar

    [20]

    Wise A M, Weker J N, Kalirai S, Farmand M, Shapiro D A, Meirer F, Weckhuysen B M 2016 ACS Catal. 6 2178Google Scholar

    [21]

    Claus D, Maiden A M, Zhang F C, Sweeney F G R, Humphry M J, Schluesener H, Rodenburg J M 2012 Opt. Express 20 9911Google Scholar

    [22]

    Cheng B, Zhang X J, Liu C, Zhu J Q 2019 J. Optics-UK 21 065602Google Scholar

    [23]

    Zong B M, Luan J Y, Jiang Z L, Kong Y, Wang S Y, Liu C 2019 Opt. Eng. 58 054102Google Scholar

    [24]

    Dong X, Pan X C, Liu C, Zhu J Q 2019 High Power Laser Sci. 7 03000e48Google Scholar

    [25]

    Humphry M, Kraus B, Hurst A, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730Google Scholar

    [26]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506Google Scholar

    [27]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227Google Scholar

    [28]

    Lorenzo V, Thomas F, Peter Z, Erwin H 2018 Opt. Lett. 43 543Google Scholar

    [29]

    Xu Y M, Pan X C, Sun M Y, Liu W F, Liu C, Zhu J Q 2022 Photonics Res. 10 1937Google Scholar

    [30]

    Lu C C, Zhou Y, Guo Y X, Jiang S W, Zhang Z B, Zheng G A, Zhong J G 2021 Opt. Express 29 12491Google Scholar

    [31]

    Li M, Bian L H, Zheng G A, Maiden A, Liu Y, Li Y M, Suo J L, Dai Q H, Zhang J 2021 Opt. Lett. 46 1624Google Scholar

    [32]

    Shi Q S, Zhou W Y, Hui W W, Huang K C, Zhao H Y, Tian J G 2018 Opt. Eng. 57 114104Google Scholar

    [33]

    Sinha A, Lee J, Li S, Barbastathis G 2017 Optica 4 1117Google Scholar

    [34]

    He X L, Pan X C, Tao H, Liu C, Zhu J Q 2022 AIP Adv. 12 065225Google Scholar

    [35]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

    [36]

    Zhang F C, Peterson I, Vila-Comamala J, Berenguer A D F, Bean R, Chen B, Menzel A, Robinson I K, Rodenburg J M 2013 Opt. Express 21 13592Google Scholar

    [37]

    Edo T B, Zhang F C, Rodenburg J M 2010 Proc. SPIE 7729 77291HGoogle Scholar

    [38]

    王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇 2017 物理学报 66 094201Google Scholar

    Wang L, Dou J T, Ma J, Yuan C J, Gao Z S, Wei C, Zhang T Y 2017 Acta Phys. Sin. 66 094201Google Scholar

    [39]

    Wan M, Healy J J, Sheridan J T 2020 Opt. Laser. Technol. 122 105859Google Scholar

    [40]

    Liu C, Eschen W, Loetgering L, Molina D S P, Klas R, Iliou A, Steinert M, Herkersdorf S, Kirsche A, Thomas P, Hillmann F, Limpert J, Rothhardt J 2023 PhotoniX 4 1Google Scholar

    [41]

    Thibault P, Menzel A 2013 Nature 494 68Google Scholar

    [42]

    Batey D J, Edo T B, Rau C, Wagner U, Pešić Z D, Waigh T A, Rodenburg J M 2014 Phys. Rev. A 89 043812Google Scholar

    [43]

    Maiden A M, Humphry M J, Zhang F C, Rodenburg J M 2011 J. Opt. Soc. Am. A 28 604Google Scholar

    [44]

    Boyle W S, Smith G E 1970 Bell Labs Tech. J. 49 587Google Scholar

    [45]

    Fossum E R 1997 IEEE T. Electron Dev. 44 1689Google Scholar

    [46]

    Pan X C, Veetil S P, Wang B S, Liu C, Zhu J Q 2015 J. Mod. Optic. 62 1270Google Scholar

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Pan Xin-Yu, Bi Xiao-Xue, Dong Zheng, Geng Zhi, Xu Han, Zhang Yi, Dong Yu-Hui, Zhang Cheng-Long. Review of development for ptychography algorithm. Acta Physica Sinica, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [3] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [4] Wu Di, Jiang Zi-Zhen, Yu Huan-Huan, Zhang Chen-Shuang, Zhang Jiao, Lin Dan-Ying, Yu Bin, Qu Jun-Le. Quantitative phase microscopy imaging based on fractional spiral phase plate. Acta Physica Sinica, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [5] Xu Wen-Hui, Ning Shou-Cong, Zhang Fu-Cai. Review of partially coherent diffraction imaging. Acta Physica Sinica, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [6] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [7] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [8] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [9] Li Yuan-Jie, He Xiao-Liang, Kong Yan, Wang Shou-Yu, Liu Cheng, Zhu Jian-Qiang. Shearing interferometric electron beam imaging based on ptychographic iterative engine method. Acta Physica Sinica, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [10] Xiao Jun, Li Deng-Yu, Wang Ya-Li, Shi Yi-Shi. Ptychographical algorithm of the parallel scheme. Acta Physica Sinica, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [11] Yu Wei, He Xiao-Liang, Liu-Cheng, Zhu Jian-Qiang. Ptychographic iterative engine with the incoherent illumination. Acta Physica Sinica, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [12] He Xiao-Liang, Liu Cheng, Wang Ji-Cheng, Wang Yue-Ke, Gao Shu-Mei, Zhu Jian-Qiang. Study on the periodic error in ptychographic iterative engine imaging. Acta Physica Sinica, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] Yang Zhen-Ya, Zheng Chu-Jun. Phase retrieval of pure phase object based on compressed sensing. Acta Physica Sinica, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [14] Wang Ya-Li, Shi Yi-Shi, Li Tuo, Gao Qian-Kun, Xiao Jun, Zhang San-Guo. Research on the key parameters of illuminating beam for imaging via ptychography in visible light band. Acta Physica Sinica, 2013, 62(6): 064206. doi: 10.7498/aps.62.064206
    [15] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [16] Wu Rong, Hua Neng, Zhang Xiao-Bo, Cao Guo-Wei, Zhao Dong-Feng, Zhou Shen-Lei. Large-diameter multi-level diffractive optical elements with high energy efficiency. Acta Physica Sinica, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [17] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [18] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [19] Huang Yan-Ping, Qi Chun-Yuan. Measurement of refractive index profile of holey fiber using quantitative phase tomography. Acta Physica Sinica, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
Metrics
  • Abstract views:  3063
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2023
  • Accepted Date:  31 May 2023
  • Available Online:  06 June 2023
  • Published Online:  05 August 2023

/

返回文章
返回