-
偏振成像技术在去除后向散射光方面是有效的.针对该技术依赖免靶区域以计算后向散射光信息限制了其适用范围和实时成像能力的问题,提出了无免靶区域的偏振成像方法.该方法结合了主动偏振成像和透射率去散射模型,将相机接收到的图像分解为具有偏振信息和无偏振信息的部分,具有偏振信息的部分采用主动成像模型计算,而无偏振信息的部分基于斯托克斯矢量计算.同时,结合透射率校正原理实现去散射.实验和真实世界水下成像结果表明,本文方法能够有效去除大部分后向散射光,且具有速率优势,能够助力实时复杂条件下的水下成像技术,在海底资源探测与研究等领域具有广阔的应用前景.Underwater optical imaging technology presents broad application prospects in fields such as marine resource exploration, underwater ecological environment monitoring, and seabed topography detection. The technology employs the polarization characteristics of light, particularly those of the background and target, to achieve a clear image. However, the traditional methods rely on target-free regions to compute the backscattered light information, which is infrequently present in the actual scene captured by the camera. Then the full-space resolution of target information light and backscattered light information are required. At this time, the traditional methods may be difficult to adapt in practical application.
In this paper, an underwater polarization de-scattering method independent of target-free regions is proposed by combining active polarization imaging and transmittance de-scattering model. Initially, the total light intensity within the camera's field of view is decomposed into its polarized and unpolarized components. By removing the backscattered light with polarized and unpolarized information from the total light intensity, a clear underwater target can be obtained. Based on the active polarization imaging model, the backscattered light with polarization information is calculated, in which the polarization angle of the backscattered light is considered as zero in the full-space. Thus, the polarization degree of the target information light occupying the camera's entire field of view can be derived. According to the polarization correlation, the polarization degree of the backscattered light can be characterized, and the intensity of the backscattered light with polarization information in the camera's entire field of view can also be obtained. Then the unpolarized component is calculated using the minimum intensity image with Stokes vector transformation. Finally, the underwater scene is obtained by combining the transmittance de-scattering principle and introducing adjustment parameters.
Experimental and real-world underwater imaging results demonstrate that the proposed method can effectively remove the majority of the backscattered light and improve the image contrast and entropy, irrespective of the presence of target-free regions. Additionally, it offers a certain rate advantage, which can facilitate the real-time complex underwater imaging technology.-
Keywords:
- target-free regions /
- underwater polarization imaging /
- de-scattering /
- transmittance correction
-
[1] Bailey G, Flemming N 2008 Quat. Sci. Rev. 27 2153
[2] Ji T, Wang G 2015 J. Ocean Univ. China 14 255
[3] Panetta K, Gao C, Agaian S 2016 IEEE J. Oceanic Eng. 41 541
[4] Li X, Han Y, Wang H, Liu T, Chen S-C, Hu H 2022 Front. Phys. 10 815296
[5] McLean E A, Burris H R, Strand M P 1995 Appl. Opt. 34 4343
[6] Jaffe J S 2005 Opt. Express 13 738
[7] Gong W, Han S 2011 Opt. Lett. 36 394
[8] Le M, Wang G, Zheng H, Liu J, Zhou Y, Xu Z 2017 Opt. Express 25 22859
[9] Schechner Y Y, Karpel N 2005 IEEE J. Oceanic Eng. 30 570
[10] Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin.64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203]
[11] Han P-L, Liu F, Zhang G, Tao Y, Shao X-P 2018 Acta Phys. Sin. 67 054202 (in Chinese) [韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202]
[12] Schechner Y Y, Narasimhan S G, Nayar S K 2003 Appl. Opt. 42 511
[13] Huang B, Liu T, Hu H, Han J, Yu M 2016 Opt. Express 24 9826
[14] Hu H, Zhao L, Huang B, Li X, Wang H, Liu T 2017 IEEE Photonics Journal 9 1
[15] Wei Y, Liu F, Yang K, Han P L, Wang X H, Shao X P 2018 Acta Phys. Sin. 67 184202 (in Chinese) [卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏 2018 物理学报 67 184202]
[16] Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385
[17] Wei Y, Han P, Liu F, Liu J, Shao X J 2021 Chin. Opt. Lett. 19 111101
[18] Wei Y, Han P, Liu F, Shao X 2021 Opt. Express 29 22275
[19] Hu H, Zhao L, Li X, Wang H, Liu T 2018 IEEE Photonics J. 10 1
[20] Feng Fei W G, Wu Yafeng, Miao Yuhong, Liu Bo. 2020 Acta Opt. Sin. 40 2111002 (in Chinese) [封斐, 吴国俊, 吴亚风, 苗宇宏, 刘博 2020 光学学报 40 2111002]
[21] Liu F, Cao L, Shao X, Han P, Bin X 2015 Appl. Opt.54 8116
[22] Deng J, Zhu J, Li H, Zhang X, Guo F, Hou X 2023 Opt. Lasers Eng. 169 107721
[23] Fang Ming, Cai Yaxin, Jiarui. Z 2024 Opt. Express 32 19801
[24] Wang J, Wan M, Cao X, Zhang X, Gu G, Chen Q 2022 Opt. Express 30 46926
[25] Shen L, Reda M, Zhang X, Zhao Y, Kong S G 2024 IEEE Trans. Geosci. Remote Sens. 62 1
[26] Pour A M, Seyedarabi H, Jahromi S H A, Javadzadeh A 2020 IEEE Access 8 136668
[27] Coifman R R, Wickerhauser M V 1992 IEEE Trans. Inform. Theory 38 713
[28] Yang L, Liang J, Zhang W, Ju H, Ren L, Shao X 2019 Opt. Commun. 438 96
计量
- 文章访问数: 148
- PDF下载量: 4
- 被引次数: 0