-
Global optimization methods are becoming more and more important in aerodynamic shape optimization. A large number of proceeding data will be generated during design optimization, from which the implicit but valuable design knowledge can be extracted. The design knowledge can then be used to help the designers to acquire the effects of geometric variations on the aerodynamic performance changes. In this paper, we strive to extract the implicit design knowledge from proceeding data by a data mining method based on proper orthogonal decomposition (POD), by which the design knowledge more enriched and more visualized than those obtained from other data mining methods can be obtained. Proceeding data for data mining are ingathered from aerodynamic shape optimization of a transonic compressor rotor blade, NASA Rotor 37. The design optimization attempts to maximize the adiabatic efficiency of Rotor 37 under the operation condition near peak efficiency with the constrains of mass flow rate and total pressure ratio. The parallel synchronous particle swarm optimization method is employed to search for the optimization in the design space. The particles with improved adiabatic efficiency, while within the optimization constrain tolerances are picked up from the design optimization, which are then used for data mining. The geometric coordinates of the aerodynamic shape with respect to the ingathered particles are regarded as the snapshots. Then the POD modes of the aerodynamic shape can be obtained by singular value decomposition on the snapshots. The results show that the universal rules of geometry variations for the optimization maximizing the adiabatic efficiency of Rotor 37 can be directly visualized by the design knowledge extracted from the proceeding data by POD-based data mining technique. Furthermore, the optimization results are also verified by the design knowledge extracted by data mining.
-
Keywords:
- data mining /
- proper orthogonal decomposition /
- aerodynamic optimization design /
- transonic
[1] Jeong S, Shimoyama K 2011 Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 225 469
[2] Jeong S, Chiba K, Obayashi S 2005 J. Aeros. Comp. Inf. Com. 2 452
[3] Chiba K, Obayashi S 2008 J. Spacecraft Rockets 45 975
[4] Oyama A, Nonomura T, Fujii K 2010 J. Aircraft 47 1756
[5] Oyama A, Verburg P, Nonomura T, Harry W M, Fujii K Holmes P, Lumley J L, Berkooz G 1997 Q. J. Roy. Meteor. Soc. 123 2500
[6] Holmes P, Lumley J L, Berkooz G 1997 Q. J. Roy. Meteor. Soc. 123 2500
[7] Guo Z D, Song L M, Li J, Li G J, Feng Z P (in Chinese) [郭振东, 宋立明, 李军, 李国君, 丰镇平 2015 推进技术 36 207]
[8] Wang W, Mo R, Zhang Y 2013 Comput. Eng. Appl. 49 11 (in Chinese) [汪伟, 莫蓉, 张岩 2013 计算机工程与应用 49 11]
[9] Sirvoich L, Kirby M 1987 Quart. Appl. Math. 45 561
[10] Duan Y H, Cai J S, Li Y Z 2012 AIAA J. 50 968
[11] LeGresley P, Alonso J Toal D J J, Bressloff N W, Keane A J, Holden C M E 2010 AIAA J. 48 916
[12] Toal D J J, Bressloff N W, Keane A J, Holden C M E 2010 AIAA J. 48 916
[13] Ghoman S, Wang Z, Chen P, Kapania K Luo J, Duan Y, Tang X, Liu F Luo J Q, Duan Y H, Xia Z H 2016 Acta Phys. Sin. 65 124702 (in Chinese) [罗佳奇, 段焰辉, 夏振华 2016 物理学报 65 124702]
[14] Luo J, Duan Y, Tang X, Liu F 2015 ASME Paper 2015 42876
[15] Luo J Q, Duan Y H, Xia Z H 2016 Acta Phys. Sin. 65 124702 (in Chinese) [罗佳奇, 段焰辉, 夏振华 2016 物理学报 65 124702]
[16] Duan Y H, Wu W H, Fan Z L, Chen T Venter G, Sobieszczanski-Sobieski J 2003 AIAA J. 41 1583
[17] Venter G, Sobieszczanski-Sobieski J 2003 AIAA J. 41 1583
[18] Hicks R M, Henne P A 1987 J. Aircraft 15 407
[19] Spalart P R A, Allmaras S 1992 AIAA Paper 1992 0439
[20] Reid L, Moore R D 1978 NASA TP 1978 1337
[21] Denton J D 1998 J. Therm. Sci. 6 1
-
[1] Jeong S, Shimoyama K 2011 Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 225 469
[2] Jeong S, Chiba K, Obayashi S 2005 J. Aeros. Comp. Inf. Com. 2 452
[3] Chiba K, Obayashi S 2008 J. Spacecraft Rockets 45 975
[4] Oyama A, Nonomura T, Fujii K 2010 J. Aircraft 47 1756
[5] Oyama A, Verburg P, Nonomura T, Harry W M, Fujii K Holmes P, Lumley J L, Berkooz G 1997 Q. J. Roy. Meteor. Soc. 123 2500
[6] Holmes P, Lumley J L, Berkooz G 1997 Q. J. Roy. Meteor. Soc. 123 2500
[7] Guo Z D, Song L M, Li J, Li G J, Feng Z P (in Chinese) [郭振东, 宋立明, 李军, 李国君, 丰镇平 2015 推进技术 36 207]
[8] Wang W, Mo R, Zhang Y 2013 Comput. Eng. Appl. 49 11 (in Chinese) [汪伟, 莫蓉, 张岩 2013 计算机工程与应用 49 11]
[9] Sirvoich L, Kirby M 1987 Quart. Appl. Math. 45 561
[10] Duan Y H, Cai J S, Li Y Z 2012 AIAA J. 50 968
[11] LeGresley P, Alonso J Toal D J J, Bressloff N W, Keane A J, Holden C M E 2010 AIAA J. 48 916
[12] Toal D J J, Bressloff N W, Keane A J, Holden C M E 2010 AIAA J. 48 916
[13] Ghoman S, Wang Z, Chen P, Kapania K Luo J, Duan Y, Tang X, Liu F Luo J Q, Duan Y H, Xia Z H 2016 Acta Phys. Sin. 65 124702 (in Chinese) [罗佳奇, 段焰辉, 夏振华 2016 物理学报 65 124702]
[14] Luo J, Duan Y, Tang X, Liu F 2015 ASME Paper 2015 42876
[15] Luo J Q, Duan Y H, Xia Z H 2016 Acta Phys. Sin. 65 124702 (in Chinese) [罗佳奇, 段焰辉, 夏振华 2016 物理学报 65 124702]
[16] Duan Y H, Wu W H, Fan Z L, Chen T Venter G, Sobieszczanski-Sobieski J 2003 AIAA J. 41 1583
[17] Venter G, Sobieszczanski-Sobieski J 2003 AIAA J. 41 1583
[18] Hicks R M, Henne P A 1987 J. Aircraft 15 407
[19] Spalart P R A, Allmaras S 1992 AIAA Paper 1992 0439
[20] Reid L, Moore R D 1978 NASA TP 1978 1337
[21] Denton J D 1998 J. Therm. Sci. 6 1
Catalog
Metrics
- Abstract views: 6353
- PDF Downloads: 210
- Cited By: 0