-
Orthogonal frequency-division multiple passive optical network (OFDM-PON) has emerged as one of the most promising solutions to meet the requirements for the next-generation wide-band optical access network with high capacity, strong fiber dispersion tolerance, and flexible resource allocation. However, like other optical access network in which the downstream signal is broadcasted to all the optical network units (ONUs), OFDM-PON is vulnerable to being eavesdropped. Thus the security of OFDM-PON should be taken seriously into consideration. Recently, some chaos based encryption methods, including chaotic scrambling and permutation, hyper-chaotic system and fractional Fourier transformation, chaos based IQ encryption method and chaos based two-dimensional scrambling, have been proposed to enhance the physical layer security of OFDM-PON system. Owing to the special chaos-related characteristics, such as ergodicity, pseudo randomness, and high sensitivity to the initial values, etc., these encryption methods are of high physical layer security. However, in most of these schemes, key distribution is not considered. In this paper, we propose a three-dimensional encryption OFDM-PON based on dynamic chaos-iteration. The key distribution is implemented through the dynamic chaos synchronization between the transmitter and receiver. The receiver tries to synchronize his chaos system with the transmitters' by calculating the correlation index of the synchronization sequence, which comes from the transmitter and is controlled by dynamic parameters in the parameter sets. The calculation is not very complex because the transmitter and receiver are acquainted with the parameter sets. The synchronized chaos system is used to generate keys for both encryption and decryption. In the proposed encryption scheme, one ONU is connected with four users, and the message is irrelevant to the users. Quadrature amplitude modulation (QAM) symbols from the users are mapped randomly onto the subcarriers in a flame based on the chaotic matrix M1. For the M1 is changeable, the number and position of subcarriers for different users are dynamically varying. Then the matrix M2 generated from chaos system is utilized to mask all QAM symbols. Finally the QAM symbol matrix is multiplied by an invertible chaotic matrix M3 to realize subcarrier perturbation. These three key matrixes are generated from the two-dimension logistic iteration chaos system, to which the initial sensitivity increases up to 10-15. The output sequence of the chaos system after quantification process is of good self-correlation and cross-correlation characteristic and can pass all NIST SP800-22 randomness tests. The key space of the encryption scheme is over 1086, which would be against exhaustive attack effectively. Specifically, a proof-of-principle experiment is conducted to demonstrate the aforementioned proposed scheme. In the experiment, a 13.3 Gb/s encrypted 64QAM OFDM signal transmits over 25 km standard single mode fiber in an OFDM-PON and successfully decrypts at the legal receiver. For an eavesdropper lacking correct keys, the received QAM constellation is totally in disorder and the bit error rate increases up to 0.46, which indicates that not any useful message is eavesdropped. The proposed scheme provides a promising candidate for the next-generation secure optical access networks.
[1] Zhang J, Qiu K, Bao W B, Deng M L, Li Y G, Zhang H B 2009 China Commun. 2009 103
[2] Cvijetic N, Qian D Y, Hu J Q 2010 IEEE Commun. Mag. 48 70
[3] Qian D Y, Cvijetic N, Hu J Q, Wang T 2010 J. Lightwave Technol. 28 484
[4] Qiu K, Yi X W, Zhang J, Zhang H B, Deng M L, Zhang C F 2011 Proc. SPIE 8309 1
[5] Zhang L J, Xin X J, Liu B, Yu J J, Zhang Q 2010 Opt. Express 18 18347
[6] Ren J Y 2009 Netinf. Security 2009 61 (in Chinese)[任建勇 2009 信息网络安全 2009 61]
[7] Peng D Q, Gu Y, Wan L Y, Chen Y 2015 Video Engineer. 39 50 (in Chinese)[彭大芹, 谷勇, 万里燕, 陈勇 2015 电视技术 39 50]
[8] Wu L C 2006 China Water Transport 6 125 (in Chinese)[吴立春 2006 中国水运(学术版) 6 125]
[9] Liu L Z, Zhang J Q, Xu G X, Liang L S, Wang M S 2014 Acta Phys. Sin. 63 010501 (in Chinese)[刘乐柱, 张季谦, 许贵霞, 梁立嗣, 汪茂盛 2014 物理学报 63 010501]
[10] Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese)[李孝峰, 潘炜, 马冬, 罗斌, 张伟利, 熊悦 2006 物理学报 55 5094]
[11] Cao L P, Xia G Q, Deng T, Lin X D, Wu Z M 2010 Acta Phys. Sin. 59 5541 (in Chinese)[操良平, 夏光琼, 邓涛, 林晓东, 吴正茂 2010 物理学报 59 5541]
[12] Zhao Q C, Wang Y C 2010 Laser Optoelectron. Prog. 47 030602 (in Chinese)[赵清春, 王云才 2010 激光与光电子学进展 47 030602]
[13] Zhao Y M, Xia G Q, Wu J G, Wu Z M 2013 Acta Phys. Sin. 62 214206 (in Chinese)[赵艳梅, 夏光琼, 吴加贵, 吴正茂 2013 物理学报 62 214206]
[14] Xiang S Y, Wen A J, Pan W, Lin L, Zhang H X, Zhang H, Guo X X, Li J F 2016 J. Lightwave Technol. 34 4221
[15] Xue C P, Jiang N, L Y X, Wang C, Li G L, Lin S Q, Qiu K 2016 Opt. Lett. 41 3690
[16] Argyris A, Syvridis D, Larger L, Annovazze-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso R C, Pesquera L, Shore K A 2005 Nature 438 343
[17] Zhang L J, Xin X J, Liu B, Yu J J 2012 Opt. Express 20 2255
[18] Liu B, Zhang L J, Xin X J, Liu N 2016 IEEE Photon. Technol. Lett. 28 2359
[19] Zhang L J, Liu B, Xin X J, Zhang Q, Yu J J, Wang Y J 2013 J. Lightwave Technol. 31 74
[20] Deng L, Cheng M F, Wang X L, Li H, Tang M, Fu S N, Shum P, Liu D M 2014 J. Lightwave Technol. 32 2629
[21] Cheng M, Deng L, Wang X, Li H, Tang M, Ke C, Shum P, Liu D 2014 IEEE Photon. J. 6 1
[22] Hu X L, Yang X L, Shen Z W, He H, Hu W S, Bai C L 2015 IEEE Photon. Technol. Lett. 27 2429
[23] Zhang W, Zhang C F, Chen C, Jin W, Qiu K 2016 IEEE Photon. Technol. Lett. 28 998
[24] Jin W, Zhang C F, Yuan W C 2016 Opt. Engineer. 55 026103
[25] Wang X Y, Shi Q J 2005 Chin. J. Appl. Mech. 22 501
[26] Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357
[27] Jiang N, Pan W, Yan L S, Luo B, Zhang W L, Xiang S Y, Yang L, Zheng D 2010 J. Lightwave Technol. 28 1978
[28] Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightwave Technol. 31 461
[29] Zhang L M, Pan B W, Chen G C, Guo L, Lu D, Zhao L J, Wang W 2017 Sci. Rep. 8 45900
期刊类型引用(8)
1. 郭志彪,关智华. 基于多混沌映射的网络通信信息数据安全加密方法. 现代传输. 2023(04): 55-59 . 百度学术 2. 张建伟,吴作栋,蔡增玉,王文倩. 云环境下基于自然对数序列的似混沌序列图像加密方案. 计算机应用与软件. 2022(01): 313-318+344 . 百度学术 3. 颜森林. 双星并联光纤激光同步网络研究. 中国激光. 2022(11): 123-132 . 百度学术 4. 曾国庆,龚晓雪,李文娟,陈艳,潘显兵. 数据置乱处理的光纤通信系统加密机制. 激光杂志. 2022(07): 149-153 . 百度学术 5. 袁芳芳,李雪梅. 基于人工智能的光通信网络加密方案设计. 激光杂志. 2022(12): 169-173 . 百度学术 6. 李增本,方文英. 光纤网络系统中的数据加密技术研究. 激光杂志. 2019(05): 158-162 . 百度学术 7. 徐昌彪,黎周. 具有共存混沌吸引子的超大范围参数混沌系统. 浙江大学学报(工学版). 2019(08): 1552-1562 . 百度学术 8. 张燕. 光突发交换网络差别数据检测系统设计. 激光杂志. 2019(12): 123-127 . 百度学术 其他类型引用(4)
-
[1] Zhang J, Qiu K, Bao W B, Deng M L, Li Y G, Zhang H B 2009 China Commun. 2009 103
[2] Cvijetic N, Qian D Y, Hu J Q 2010 IEEE Commun. Mag. 48 70
[3] Qian D Y, Cvijetic N, Hu J Q, Wang T 2010 J. Lightwave Technol. 28 484
[4] Qiu K, Yi X W, Zhang J, Zhang H B, Deng M L, Zhang C F 2011 Proc. SPIE 8309 1
[5] Zhang L J, Xin X J, Liu B, Yu J J, Zhang Q 2010 Opt. Express 18 18347
[6] Ren J Y 2009 Netinf. Security 2009 61 (in Chinese)[任建勇 2009 信息网络安全 2009 61]
[7] Peng D Q, Gu Y, Wan L Y, Chen Y 2015 Video Engineer. 39 50 (in Chinese)[彭大芹, 谷勇, 万里燕, 陈勇 2015 电视技术 39 50]
[8] Wu L C 2006 China Water Transport 6 125 (in Chinese)[吴立春 2006 中国水运(学术版) 6 125]
[9] Liu L Z, Zhang J Q, Xu G X, Liang L S, Wang M S 2014 Acta Phys. Sin. 63 010501 (in Chinese)[刘乐柱, 张季谦, 许贵霞, 梁立嗣, 汪茂盛 2014 物理学报 63 010501]
[10] Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese)[李孝峰, 潘炜, 马冬, 罗斌, 张伟利, 熊悦 2006 物理学报 55 5094]
[11] Cao L P, Xia G Q, Deng T, Lin X D, Wu Z M 2010 Acta Phys. Sin. 59 5541 (in Chinese)[操良平, 夏光琼, 邓涛, 林晓东, 吴正茂 2010 物理学报 59 5541]
[12] Zhao Q C, Wang Y C 2010 Laser Optoelectron. Prog. 47 030602 (in Chinese)[赵清春, 王云才 2010 激光与光电子学进展 47 030602]
[13] Zhao Y M, Xia G Q, Wu J G, Wu Z M 2013 Acta Phys. Sin. 62 214206 (in Chinese)[赵艳梅, 夏光琼, 吴加贵, 吴正茂 2013 物理学报 62 214206]
[14] Xiang S Y, Wen A J, Pan W, Lin L, Zhang H X, Zhang H, Guo X X, Li J F 2016 J. Lightwave Technol. 34 4221
[15] Xue C P, Jiang N, L Y X, Wang C, Li G L, Lin S Q, Qiu K 2016 Opt. Lett. 41 3690
[16] Argyris A, Syvridis D, Larger L, Annovazze-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso R C, Pesquera L, Shore K A 2005 Nature 438 343
[17] Zhang L J, Xin X J, Liu B, Yu J J 2012 Opt. Express 20 2255
[18] Liu B, Zhang L J, Xin X J, Liu N 2016 IEEE Photon. Technol. Lett. 28 2359
[19] Zhang L J, Liu B, Xin X J, Zhang Q, Yu J J, Wang Y J 2013 J. Lightwave Technol. 31 74
[20] Deng L, Cheng M F, Wang X L, Li H, Tang M, Fu S N, Shum P, Liu D M 2014 J. Lightwave Technol. 32 2629
[21] Cheng M, Deng L, Wang X, Li H, Tang M, Ke C, Shum P, Liu D 2014 IEEE Photon. J. 6 1
[22] Hu X L, Yang X L, Shen Z W, He H, Hu W S, Bai C L 2015 IEEE Photon. Technol. Lett. 27 2429
[23] Zhang W, Zhang C F, Chen C, Jin W, Qiu K 2016 IEEE Photon. Technol. Lett. 28 998
[24] Jin W, Zhang C F, Yuan W C 2016 Opt. Engineer. 55 026103
[25] Wang X Y, Shi Q J 2005 Chin. J. Appl. Mech. 22 501
[26] Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357
[27] Jiang N, Pan W, Yan L S, Luo B, Zhang W L, Xiang S Y, Yang L, Zheng D 2010 J. Lightwave Technol. 28 1978
[28] Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightwave Technol. 31 461
[29] Zhang L M, Pan B W, Chen G C, Guo L, Lu D, Zhao L J, Wang W 2017 Sci. Rep. 8 45900
期刊类型引用(8)
1. 郭志彪,关智华. 基于多混沌映射的网络通信信息数据安全加密方法. 现代传输. 2023(04): 55-59 . 百度学术 2. 张建伟,吴作栋,蔡增玉,王文倩. 云环境下基于自然对数序列的似混沌序列图像加密方案. 计算机应用与软件. 2022(01): 313-318+344 . 百度学术 3. 颜森林. 双星并联光纤激光同步网络研究. 中国激光. 2022(11): 123-132 . 百度学术 4. 曾国庆,龚晓雪,李文娟,陈艳,潘显兵. 数据置乱处理的光纤通信系统加密机制. 激光杂志. 2022(07): 149-153 . 百度学术 5. 袁芳芳,李雪梅. 基于人工智能的光通信网络加密方案设计. 激光杂志. 2022(12): 169-173 . 百度学术 6. 李增本,方文英. 光纤网络系统中的数据加密技术研究. 激光杂志. 2019(05): 158-162 . 百度学术 7. 徐昌彪,黎周. 具有共存混沌吸引子的超大范围参数混沌系统. 浙江大学学报(工学版). 2019(08): 1552-1562 . 百度学术 8. 张燕. 光突发交换网络差别数据检测系统设计. 激光杂志. 2019(12): 123-127 . 百度学术 其他类型引用(4)
Catalog
Metrics
- Abstract views: 6440
- PDF Downloads: 203
- Cited By: 12