Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A three-dimensional encryption orthogonal frequency division multiplexing passive optical network based on dynamic chaos-iteration

Lin Shu-Qing Jiang Ning Wang Chao Hu Shao-Hua Li Gui-Lan Xue Chen-Peng Liu Yu-Qian Qiu Kun

Citation:

A three-dimensional encryption orthogonal frequency division multiplexing passive optical network based on dynamic chaos-iteration

Lin Shu-Qing, Jiang Ning, Wang Chao, Hu Shao-Hua, Li Gui-Lan, Xue Chen-Peng, Liu Yu-Qian, Qiu Kun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Orthogonal frequency-division multiple passive optical network (OFDM-PON) has emerged as one of the most promising solutions to meet the requirements for the next-generation wide-band optical access network with high capacity, strong fiber dispersion tolerance, and flexible resource allocation. However, like other optical access network in which the downstream signal is broadcasted to all the optical network units (ONUs), OFDM-PON is vulnerable to being eavesdropped. Thus the security of OFDM-PON should be taken seriously into consideration. Recently, some chaos based encryption methods, including chaotic scrambling and permutation, hyper-chaotic system and fractional Fourier transformation, chaos based IQ encryption method and chaos based two-dimensional scrambling, have been proposed to enhance the physical layer security of OFDM-PON system. Owing to the special chaos-related characteristics, such as ergodicity, pseudo randomness, and high sensitivity to the initial values, etc., these encryption methods are of high physical layer security. However, in most of these schemes, key distribution is not considered. In this paper, we propose a three-dimensional encryption OFDM-PON based on dynamic chaos-iteration. The key distribution is implemented through the dynamic chaos synchronization between the transmitter and receiver. The receiver tries to synchronize his chaos system with the transmitters' by calculating the correlation index of the synchronization sequence, which comes from the transmitter and is controlled by dynamic parameters in the parameter sets. The calculation is not very complex because the transmitter and receiver are acquainted with the parameter sets. The synchronized chaos system is used to generate keys for both encryption and decryption. In the proposed encryption scheme, one ONU is connected with four users, and the message is irrelevant to the users. Quadrature amplitude modulation (QAM) symbols from the users are mapped randomly onto the subcarriers in a flame based on the chaotic matrix M1. For the M1 is changeable, the number and position of subcarriers for different users are dynamically varying. Then the matrix M2 generated from chaos system is utilized to mask all QAM symbols. Finally the QAM symbol matrix is multiplied by an invertible chaotic matrix M3 to realize subcarrier perturbation. These three key matrixes are generated from the two-dimension logistic iteration chaos system, to which the initial sensitivity increases up to 10-15. The output sequence of the chaos system after quantification process is of good self-correlation and cross-correlation characteristic and can pass all NIST SP800-22 randomness tests. The key space of the encryption scheme is over 1086, which would be against exhaustive attack effectively. Specifically, a proof-of-principle experiment is conducted to demonstrate the aforementioned proposed scheme. In the experiment, a 13.3 Gb/s encrypted 64QAM OFDM signal transmits over 25 km standard single mode fiber in an OFDM-PON and successfully decrypts at the legal receiver. For an eavesdropper lacking correct keys, the received QAM constellation is totally in disorder and the bit error rate increases up to 0.46, which indicates that not any useful message is eavesdropped. The proposed scheme provides a promising candidate for the next-generation secure optical access networks.
      Corresponding author: Jiang Ning, uestc_nj@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671119, 61471087, 61301156).
    [1]

    Zhang J, Qiu K, Bao W B, Deng M L, Li Y G, Zhang H B 2009 China Commun. 2009 103

    [2]

    Cvijetic N, Qian D Y, Hu J Q 2010 IEEE Commun. Mag. 48 70

    [3]

    Qian D Y, Cvijetic N, Hu J Q, Wang T 2010 J. Lightwave Technol. 28 484

    [4]

    Qiu K, Yi X W, Zhang J, Zhang H B, Deng M L, Zhang C F 2011 Proc. SPIE 8309 1

    [5]

    Zhang L J, Xin X J, Liu B, Yu J J, Zhang Q 2010 Opt. Express 18 18347

    [6]

    Ren J Y 2009 Netinf. Security 2009 61 (in Chinese)[任建勇 2009 信息网络安全 2009 61]

    [7]

    Peng D Q, Gu Y, Wan L Y, Chen Y 2015 Video Engineer. 39 50 (in Chinese)[彭大芹, 谷勇, 万里燕, 陈勇 2015 电视技术 39 50]

    [8]

    Wu L C 2006 China Water Transport 6 125 (in Chinese)[吴立春 2006 中国水运(学术版) 6 125]

    [9]

    Liu L Z, Zhang J Q, Xu G X, Liang L S, Wang M S 2014 Acta Phys. Sin. 63 010501 (in Chinese)[刘乐柱, 张季谦, 许贵霞, 梁立嗣, 汪茂盛 2014 物理学报 63 010501]

    [10]

    Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese)[李孝峰, 潘炜, 马冬, 罗斌, 张伟利, 熊悦 2006 物理学报 55 5094]

    [11]

    Cao L P, Xia G Q, Deng T, Lin X D, Wu Z M 2010 Acta Phys. Sin. 59 5541 (in Chinese)[操良平, 夏光琼, 邓涛, 林晓东, 吴正茂 2010 物理学报 59 5541]

    [12]

    Zhao Q C, Wang Y C 2010 Laser Optoelectron. Prog. 47 030602 (in Chinese)[赵清春, 王云才 2010 激光与光电子学进展 47 030602]

    [13]

    Zhao Y M, Xia G Q, Wu J G, Wu Z M 2013 Acta Phys. Sin. 62 214206 (in Chinese)[赵艳梅, 夏光琼, 吴加贵, 吴正茂 2013 物理学报 62 214206]

    [14]

    Xiang S Y, Wen A J, Pan W, Lin L, Zhang H X, Zhang H, Guo X X, Li J F 2016 J. Lightwave Technol. 34 4221

    [15]

    Xue C P, Jiang N, L Y X, Wang C, Li G L, Lin S Q, Qiu K 2016 Opt. Lett. 41 3690

    [16]

    Argyris A, Syvridis D, Larger L, Annovazze-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso R C, Pesquera L, Shore K A 2005 Nature 438 343

    [17]

    Zhang L J, Xin X J, Liu B, Yu J J 2012 Opt. Express 20 2255

    [18]

    Liu B, Zhang L J, Xin X J, Liu N 2016 IEEE Photon. Technol. Lett. 28 2359

    [19]

    Zhang L J, Liu B, Xin X J, Zhang Q, Yu J J, Wang Y J 2013 J. Lightwave Technol. 31 74

    [20]

    Deng L, Cheng M F, Wang X L, Li H, Tang M, Fu S N, Shum P, Liu D M 2014 J. Lightwave Technol. 32 2629

    [21]

    Cheng M, Deng L, Wang X, Li H, Tang M, Ke C, Shum P, Liu D 2014 IEEE Photon. J. 6 1

    [22]

    Hu X L, Yang X L, Shen Z W, He H, Hu W S, Bai C L 2015 IEEE Photon. Technol. Lett. 27 2429

    [23]

    Zhang W, Zhang C F, Chen C, Jin W, Qiu K 2016 IEEE Photon. Technol. Lett. 28 998

    [24]

    Jin W, Zhang C F, Yuan W C 2016 Opt. Engineer. 55 026103

    [25]

    Wang X Y, Shi Q J 2005 Chin. J. Appl. Mech. 22 501

    [26]

    Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357

    [27]

    Jiang N, Pan W, Yan L S, Luo B, Zhang W L, Xiang S Y, Yang L, Zheng D 2010 J. Lightwave Technol. 28 1978

    [28]

    Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightwave Technol. 31 461

    [29]

    Zhang L M, Pan B W, Chen G C, Guo L, Lu D, Zhao L J, Wang W 2017 Sci. Rep. 8 45900

  • [1]

    Zhang J, Qiu K, Bao W B, Deng M L, Li Y G, Zhang H B 2009 China Commun. 2009 103

    [2]

    Cvijetic N, Qian D Y, Hu J Q 2010 IEEE Commun. Mag. 48 70

    [3]

    Qian D Y, Cvijetic N, Hu J Q, Wang T 2010 J. Lightwave Technol. 28 484

    [4]

    Qiu K, Yi X W, Zhang J, Zhang H B, Deng M L, Zhang C F 2011 Proc. SPIE 8309 1

    [5]

    Zhang L J, Xin X J, Liu B, Yu J J, Zhang Q 2010 Opt. Express 18 18347

    [6]

    Ren J Y 2009 Netinf. Security 2009 61 (in Chinese)[任建勇 2009 信息网络安全 2009 61]

    [7]

    Peng D Q, Gu Y, Wan L Y, Chen Y 2015 Video Engineer. 39 50 (in Chinese)[彭大芹, 谷勇, 万里燕, 陈勇 2015 电视技术 39 50]

    [8]

    Wu L C 2006 China Water Transport 6 125 (in Chinese)[吴立春 2006 中国水运(学术版) 6 125]

    [9]

    Liu L Z, Zhang J Q, Xu G X, Liang L S, Wang M S 2014 Acta Phys. Sin. 63 010501 (in Chinese)[刘乐柱, 张季谦, 许贵霞, 梁立嗣, 汪茂盛 2014 物理学报 63 010501]

    [10]

    Li X F, Pan W, Ma D, Luo B, Zhang W L, Xiong Y 2006 Acta Phys. Sin. 55 5094 (in Chinese)[李孝峰, 潘炜, 马冬, 罗斌, 张伟利, 熊悦 2006 物理学报 55 5094]

    [11]

    Cao L P, Xia G Q, Deng T, Lin X D, Wu Z M 2010 Acta Phys. Sin. 59 5541 (in Chinese)[操良平, 夏光琼, 邓涛, 林晓东, 吴正茂 2010 物理学报 59 5541]

    [12]

    Zhao Q C, Wang Y C 2010 Laser Optoelectron. Prog. 47 030602 (in Chinese)[赵清春, 王云才 2010 激光与光电子学进展 47 030602]

    [13]

    Zhao Y M, Xia G Q, Wu J G, Wu Z M 2013 Acta Phys. Sin. 62 214206 (in Chinese)[赵艳梅, 夏光琼, 吴加贵, 吴正茂 2013 物理学报 62 214206]

    [14]

    Xiang S Y, Wen A J, Pan W, Lin L, Zhang H X, Zhang H, Guo X X, Li J F 2016 J. Lightwave Technol. 34 4221

    [15]

    Xue C P, Jiang N, L Y X, Wang C, Li G L, Lin S Q, Qiu K 2016 Opt. Lett. 41 3690

    [16]

    Argyris A, Syvridis D, Larger L, Annovazze-Lodi V, Colet P, Fischer I, Garcia-Ojalvo J, Mirasso R C, Pesquera L, Shore K A 2005 Nature 438 343

    [17]

    Zhang L J, Xin X J, Liu B, Yu J J 2012 Opt. Express 20 2255

    [18]

    Liu B, Zhang L J, Xin X J, Liu N 2016 IEEE Photon. Technol. Lett. 28 2359

    [19]

    Zhang L J, Liu B, Xin X J, Zhang Q, Yu J J, Wang Y J 2013 J. Lightwave Technol. 31 74

    [20]

    Deng L, Cheng M F, Wang X L, Li H, Tang M, Fu S N, Shum P, Liu D M 2014 J. Lightwave Technol. 32 2629

    [21]

    Cheng M, Deng L, Wang X, Li H, Tang M, Ke C, Shum P, Liu D 2014 IEEE Photon. J. 6 1

    [22]

    Hu X L, Yang X L, Shen Z W, He H, Hu W S, Bai C L 2015 IEEE Photon. Technol. Lett. 27 2429

    [23]

    Zhang W, Zhang C F, Chen C, Jin W, Qiu K 2016 IEEE Photon. Technol. Lett. 28 998

    [24]

    Jin W, Zhang C F, Yuan W C 2016 Opt. Engineer. 55 026103

    [25]

    Wang X Y, Shi Q J 2005 Chin. J. Appl. Mech. 22 501

    [26]

    Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357

    [27]

    Jiang N, Pan W, Yan L S, Luo B, Zhang W L, Xiang S Y, Yang L, Zheng D 2010 J. Lightwave Technol. 28 1978

    [28]

    Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightwave Technol. 31 461

    [29]

    Zhang L M, Pan B W, Chen G C, Guo L, Lu D, Zhao L J, Wang W 2017 Sci. Rep. 8 45900

  • [1] Wang Wei-Jie, Jiang Mei-Mei, Wang Shu-Mei, Qu Ying-Jie, Ma Hong-Yang, Qiu Tian-Hui. Quantum image chaos encryption scheme based on quantum long-short term memory network. Acta Physica Sinica, 2023, 72(12): 120301. doi: 10.7498/aps.72.20230242
    [2] Fang Jie, Jiang Ming-Hao, An Xiao-Yu, Sun Jun-Wei. "One image corresponding to one key" image encryption algorithm based on chaotic encryption and DNA encoding. Acta Physica Sinica, 2021, 70(7): 070501. doi: 10.7498/aps.70.20201642
    [3] Wen He-Ping, Yu Si-Min, Lü Jin-Hu. Encryption algorithm based on Hadoop and non-degenerate high-dimensional discrete hyperchaotic system. Acta Physica Sinica, 2017, 66(23): 230503. doi: 10.7498/aps.66.230503
    [4] Bai Guang-Fu, Jiang Yang, Hu Lin, Tian Jing, Zi Yue-Jiao. Delay division multiplexing orthogonal frequency-division multiple access passive optical networks using low-sampling-rate analog-to-digital converter. Acta Physica Sinica, 2017, 66(19): 194204. doi: 10.7498/aps.66.194204
    [5] Ba Bin, Liu Guo-Chun, Li Tao, Lin Yu-Cheng, Wang Yu. Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended hadamard product. Acta Physica Sinica, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [6] Yin Yan-Ling, Qiao Gang, Liu Song-Zuo, Zhou Feng. Sparse channel estimation of underwater acoustic orthogonal frequency division multiplexing based on basis pursuit denoising. Acta Physica Sinica, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301
    [7] Wang Yi-Lin, Ma Shi-Long, Liang Guo-Long, Fan Zhan. Chirp spread spectrum of orthogonal frequency division multiplexing underwater acoustic communication system based on multi-path diversity receive. Acta Physica Sinica, 2014, 63(4): 044302. doi: 10.7498/aps.63.044302
    [8] Li Yu-Shan, Lü Ling, Liu Ye, Liu Shuo, Yan Bing-Bing, Chang Huan, Zhou Jia-Nan. Spatiotemporal chaos synchronization of complex networks by Backstepping design. Acta Physica Sinica, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [9] Zhang Xu-Dong, Zhu Ping, Xie Xiao-Ping, He Guo-Guang. A dynamic threshold value control method for chaotic neural networks. Acta Physica Sinica, 2013, 62(21): 210506. doi: 10.7498/aps.62.210506
    [10] Wang Wei, Qiao Gang, Xing Si-Yu. A selective mapping peak-to-average power ratio reduction algorithm without side information for underwater acoustic multiple-input multiple-output orthogonal frequency division multiplexing communication. Acta Physica Sinica, 2013, 62(18): 184301. doi: 10.7498/aps.62.184301
    [11] Tong Xiao-Jun, Zuo Ke, Wang Zhu. The Novel Block Encryption Scheme Based on Hybrid Chaotic Maps for the Wireless Sensor Networks. Acta Physica Sinica, 2012, 61(3): 030502. doi: 10.7498/aps.61.030502
    [12] Sun Fu-Yan, Lv Zong-Wang. Cryptographic spatial chaos sequence. Acta Physica Sinica, 2011, 60(4): 040503. doi: 10.7498/aps.60.040503
    [13] Zhao Liang, Liao Xiao-Feng, Xiang Tao, Xiao Di. Color image degradation algorithms based on Z-matrix map and selective encryption. Acta Physica Sinica, 2010, 59(3): 1507-1523. doi: 10.7498/aps.59.1507
    [14] Li Yan, Lü Ling, Luan Ling. Lag synchronization of spatiotemporal chaos in a weighted network with ring connection. Acta Physica Sinica, 2009, 58(7): 4463-4468. doi: 10.7498/aps.58.4463
    [15] Xu Shu-Jiang, Wang Ji-Zhi. An improved block cryptosystem based on iterating chaotic map. Acta Physica Sinica, 2008, 57(1): 37-41. doi: 10.7498/aps.57.37
    [16] Li Wei, Hao Jian-Hong, Qi Bing. An encryption approach to chaos synchronization communications by using CPRNG. Acta Physica Sinica, 2008, 57(3): 1398-1403. doi: 10.7498/aps.57.1398
    [17] Synchronization of star-network of hyperchaotic R?ssler systems. Acta Physica Sinica, 2007, 56(12): 6828-6835. doi: 10.7498/aps.56.6828
    [18] Wu Zhong-Qiang, Tan Fu-Xiao, Wang Shao-Xian. The synchronization of hyper-chaotic system of cellular neural network based on passivity. Acta Physica Sinica, 2006, 55(4): 1651-1658. doi: 10.7498/aps.55.1651
    [19] Xie Kun, Lei Min, Feng Zheng-Jin. A study of a kind of hyper chaotic cryptosystem security. Acta Physica Sinica, 2005, 54(3): 1267-1272. doi: 10.7498/aps.54.1267
    [20] KUANG JING-YU, DENG KUN, HUANG RONG-HAI. AN ENCRYPTION APPROACH TO DIGITAL COMMUNICATION BY USING SPATIOTEMPORAL CHAOS SYNCHRONIZATION. Acta Physica Sinica, 2001, 50(10): 1856-1861. doi: 10.7498/aps.50.1856
Metrics
  • Abstract views:  6261
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2017
  • Accepted Date:  12 October 2017
  • Published Online:  20 January 2019

/

返回文章
返回