[1] |
Zhang Lü-Yi, Wang Ge-Li, Tan Gui-Rong, Wu Yue. Experimental study on prediction of nonlinear system based on causality test. Acta Physica Sinica,
2022, 71(8): 080502.
doi: 10.7498/aps.71.20211871
|
[2] |
Lin Shu-Qing, Jiang Ning, Wang Chao, Hu Shao-Hua, Li Gui-Lan, Xue Chen-Peng, Liu Yu-Qian, Qiu Kun. A three-dimensional encryption orthogonal frequency division multiplexing passive optical network based on dynamic chaos-iteration. Acta Physica Sinica,
2018, 67(2): 028401.
doi: 10.7498/aps.67.20171246
|
[3] |
Zeng Ming, Wang Er-Hong, Zhao Ming-Yuan, Meng Qing-Hao. Directed weighted complex networks based on time series symbolic pattern representation. Acta Physica Sinica,
2017, 66(21): 210502.
doi: 10.7498/aps.66.210502
|
[4] |
Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen. Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica,
2015, 64(3): 030506.
doi: 10.7498/aps.64.030506
|
[5] |
Wang Xin-Ying, Han Min, Wang Ya-Nan. Analysis of noisy chaotic time series prediction error. Acta Physica Sinica,
2013, 62(5): 050504.
doi: 10.7498/aps.62.050504
|
[6] |
Yu Yan-Hua, Song Jun-De. Redundancy-test-based hyper-parameters selection approach for support vector machines to predict time series. Acta Physica Sinica,
2012, 61(17): 170516.
doi: 10.7498/aps.61.170516
|
[7] |
Hou Feng-Zhen, Huang Xiao-Lin, Zhuang Jian-Jun, Huo Cheng-Yu, Ning Xin-Bao. Multi-scale strategy and data surrogating test: two elements for the detection of time irreversibility in heart rate variability. Acta Physica Sinica,
2012, 61(22): 220507.
doi: 10.7498/aps.61.220507
|
[8] |
Sun Fu-Yan, Lv Zong-Wang. Cryptographic spatial chaos sequence. Acta Physica Sinica,
2011, 60(4): 040503.
doi: 10.7498/aps.60.040503
|
[9] |
Zhao Liang, Liao Xiao-Feng, Xiang Tao, Xiao Di. Color image degradation algorithms based on Z-matrix map and selective encryption. Acta Physica Sinica,
2010, 59(3): 1507-1523.
doi: 10.7498/aps.59.1507
|
[10] |
Jiang Ke-Yu, Cai Zhi-Ming, Lu Zhen-Bo. A test method for weak nonlinearity in time series. Acta Physica Sinica,
2008, 57(3): 1471-1476.
doi: 10.7498/aps.57.1471
|
[11] |
Song Ai-Jun, Han Lei. Study of nonlinear identification of time series of vibration on transducer in ultrasonic bonding system. Acta Physica Sinica,
2007, 56(7): 3820-3826.
doi: 10.7498/aps.56.3820
|
[12] |
Gong Zhi-Qiang, Zou Ming-Wei, Gao Xin-Quan, Dong Wen-Jie. On the difference between empirical mode decomposition and wavelet decomposition in the nonlinear time series. Acta Physica Sinica,
2005, 54(8): 3947-3957.
doi: 10.7498/aps.54.3947
|
[13] |
Lei Min, Meng Guang, Feng Zheng-Jin. Detecting the nonlinearity for time series sampled from continuous dynamic systems. Acta Physica Sinica,
2005, 54(3): 1059-1063.
doi: 10.7498/aps.54.1059
|
[14] |
Gan Jian-Chao, Xiao Xian-Ci. Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅱ)nonlinear adaptive filter. Acta Physica Sinica,
2003, 52(5): 1102-1107.
doi: 10.7498/aps.52.1102
|
[15] |
Gan Jian-Chao, Xiao Xian-Ci. Nonlinear adaptive multi-step-prediction of chaotic time series based on points in the neighborhood. Acta Physica Sinica,
2003, 52(12): 2995-3001.
doi: 10.7498/aps.52.2995
|
[16] |
LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING. A NEW METHOD OF SURROGATE DATA TEST FOR LINEAR NON-GAUSSIAN TIME SERIES. Acta Physica Sinica,
2001, 50(7): 1241-1247.
doi: 10.7498/aps.50.1241
|
[17] |
LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING. SURROGATE DATA TEST FOR THE LINEAR NON-GAUSSIAN TIME SERIES WITH NON-MINIMUM PHASE. Acta Physica Sinica,
2001, 50(4): 633-637.
doi: 10.7498/aps.50.633
|
[18] |
ZHANG JIA-SHU, XIAO XIAN-CI. PREDICTION OF CHAOTIC TIME SERIES BY USING ADAPTIVE HIGHER-ORDER NONLINEAR FOUR IER INFRARED FILTER. Acta Physica Sinica,
2000, 49(7): 1221-1227.
doi: 10.7498/aps.49.1221
|
[19] |
YUAN JIAN, XIAO XIAN-CI. HIGHER-ORDER SINGULAR-SPECTRUM ANALYSIS OF NONLINEAR TIME SERIES. Acta Physica Sinica,
1998, 47(6): 897-905.
doi: 10.7498/aps.47.897
|
[20] |
YUAN JIAN, XIAO XIAN-CI. ANALYSIS OF THE MULTIVARIATE TIME SERIES-IN AN OBSERVATION WINDOW. Acta Physica Sinica,
1997, 46(11): 2095-2103.
doi: 10.7498/aps.46.2095
|