Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Movement of ablated high-Z plasmas

Liu Zhong-Heng Meng Guang-Wei Zhao Ying-Kui

Citation:

Movement of ablated high-Z plasmas

Liu Zhong-Heng, Meng Guang-Wei, Zhao Ying-Kui
PDF
HTML
Get Citation
  • The energy leaking through a slot in the hohlraum filled with low-Z foams is a typical dynamic problem of the ablated high-Z plasmas. In this paper, we develop a simplified one-dimensional model to study the expansion-reverse process of the ablated Au plasmas, which corresponds to the closing-reopening process of a slot. Our work shows that its physical mechanism is the ablation pressure competing with radiation pressure difference and the material pressure of low-Z foams. The analytical formulas for the reverse time and reverse distance of the Au plasma are deduced, respectively, indicating that the cubic value for each of both peak temperatures is proportional to the density of the low-Z foams. The main conclusions of analytic theory are verified by numerical simulation through using the modified radiation-hydrodynamic program MULTI. It is shown that the power exponents of scaling law in high-Z plasma ablation keep unchanged in a wide range of density of low-Z foams. The range of validity of the model is discussed.
      Corresponding author: Meng Guang-Wei, meng_guangwei@iapcm.ac.cn ; Zhao Ying-Kui, zhao_yingkui@iapcm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200)
    [1]

    Davidson R C 2004 National Task Force on High Energy Density Physics (Washington, DC: Office of Science and Technology Policy) pp1, 2

    [2]

    Meng G W, Wang J G, Wang X R, Li J H, Zhang W Y 2016 Matter Rad. Extremes 1 249Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [4]

    Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar

    [5]

    Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar

    [6]

    Blondin J M, Wright E B, Borkowski K J, Reynolds S P 1998 Astrophys. J. 500 342Google Scholar

    [7]

    Vink J 2012 Astron. Astrophys. Rev. 20 49Google Scholar

    [8]

    Laming J M, Grun J 2002 Phys. Rev. Lett. 89 125002Google Scholar

    [9]

    Pound M W, Kane J O, Ryutov D D, Remington B A, Mizuta A 2007 Astrophys. Space Sci. 307 187Google Scholar

    [10]

    Mizuta A, Kane J O, Pound M W, Remington B A, Ryutov D D, Takabe H 2006 Astrophys. J. 647 1151Google Scholar

    [11]

    Armitage P J, Livio M 1998 Astrophys. J. 493 898Google Scholar

    [12]

    Maccarone T J 2014 Space Sci. Rev. 183 101Google Scholar

    [13]

    Marshak R E 1958 Phys. Fluids 1 24Google Scholar

    [14]

    Zeldovich Y B, Raizer Y P 1967 Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Part II (New York: Academic) pp238-240

    [15]

    Meng G W, Li J H, Yang J M, Zhu T, Zou S Y, Wang M, Zhang W Y 2013 Phys. Plasmas 20 092704Google Scholar

    [16]

    Pakula R, Sigel R 1985 Phys. Fluids 28 232Google Scholar

    [17]

    Shussman T, Heizler S I 2015 Phys. Plasmas 22 082109Google Scholar

    [18]

    Kaiser N, Meyer-ter-Vehn J, Sigel R 1989 Phys. Fluids B 1 1747

    [19]

    Hammer J H, Rosen M D 2003 Phys. Plasmas 10 1829Google Scholar

    [20]

    Hurricane O A, Hammer J H 2006 Phys. Plasmas 13 113303Google Scholar

    [21]

    Back C A, Bauer J D, Landen O L, Turner R E, Lasinski B F, Hammer J H, Rosen M D, Suter L J, Hsing W H 2000 Phys. Rev. Lett. 84 274Google Scholar

    [22]

    Back C A, Bauer J D, Hammer J H, Lasinski B F, Turner R E, Rambo P W, Landen O L, Suter L J, Rosen M D, Hsing W H 2000 Phys. Plasmas 7 2126Google Scholar

    [23]

    Hoarty D, Willi O, Barringer L, Vickers C, Watt R, Nazarov W 1999 Phys. Plasmas 6 2171Google Scholar

    [24]

    Guymer T M, Moore A S, Morton J, Kline J L, Allan S, Bazin N, Benstead J, Bentley C, Comley A J, Cowan J, Flippo K, Garbett W, Hamilton C, Lanier N E, Mussack K, Obrey K, Reed L, Schmidt D W, Stevenson R M, Taccetti J M, Workman J 2015 Phys. Plasmas 22 043303Google Scholar

    [25]

    李三伟, 杨东, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202

    Li S W, Yang D, Li X, et al. 2018 Sci. Sin.: Phys. Mech. Astron. 48 065202

    [26]

    蓝可, 贺贤土, 赖东显, 李双贵 2006 物理学报 55 3789Google Scholar

    Lan K, He X T, Lai D X, Li S G 2006 Acta Phys. Sin. 55 3789Google Scholar

    [27]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wikens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311Google Scholar

    [28]

    Orzechowski T J, Rosen M D, Kornblum H N, Porter J L, Suter L J, Thiessen A R, Wallace R J 1996 Phys. Rev. Lett. 77 3545Google Scholar

    [29]

    Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702Google Scholar

    [30]

    Cooper A B R, Schneider M B, MacLaren S A, Moore A S, Young P E, Hsing W W, Seugling R, Foord M E, Sain J D, May M J, Marrs R E, Maddox B R, Lu K, Dodson K, Smalyuk V, Graham P, Foster J M, Back C A, Hund J F 2013 Phys. Plasmas 20 033301Google Scholar

    [31]

    Moore A S, Cooper A B R, Schneider M B, MacLaren S, Graham P, Lu K, Seugling R, Satcher J, Klingmann J, Comely A J, Marrs R, May M, Widmann K, Glendinning G, Castor J, Sain J, Back C A, Hund J, Baker K, Hsing W W, Foster J, Young B, Young P 2014 Phys. Plasmas 21 063303Google Scholar

    [32]

    Meng G W, Zou S Y, Wang M 2019 Phys. Plasmas 26 022708Google Scholar

    [33]

    Hall G N, Jones O S, Strozzi D J, Moody J D, Turnbull D, Ralph J, Michel P A, Hohenberger M, Moore A S, Landen O L, Divol L, Bradley D K, Hinkel D E, Mackinnon A J, Town R P J, Meezan N B, Hopkins L B, Izumi N 2017 Phys. Plasmas 24 052706Google Scholar

    [34]

    Schneider M B, MacLaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kikenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, Moody J D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar

    [35]

    Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8Google Scholar

    [36]

    曾先才, 姜荣洪, 常铁强 1991 强激光与粒子束 3 477

    Zeng X C, Jiang R H, Chang T Q 1991 High Power and Particle Beams 3 477

    [37]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [38]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [39]

    Ramis R 2017 J. Comput. Phys. 330 173Google Scholar

    [40]

    Pasley J, Nilson P, Willingale L, Haines M G, Notley M, Tolley M, Neely D, Nazarov W, Willi O 2006 Phys. Plasmas 13 032702Google Scholar

  • 图 1  (a)物理模型的简化; (b)一维模型的示意图; (c)波系示意图

    Figure 1.  (a) Simplification of physical model; (b) one-dimensional model; (c) the wave system.

    图 2  Au等离子体的左界面在不同${d_1}$${d_2}$条件下的(a)位移和(b)速度随时间的变化; 折返时间和折返距离分别随(c) ${d_1}$(取${d_2} = 1\;{\rm{cm}}$), (d) ${d_2}$(取${d_{\rm{1}}} = 50 \;{\rm{cm}}$)的变化

    Figure 2.  (a) Displacement and (b) velocity of the left interface of Au plasmas versus time under the condition of different ${d_1}$ and ${d_2}$. The reverse time and distance of Au plasmas versus (c) ${d_1}$ with ${d_2} = 1\;{\rm{cm}}$ and (d) ${d_2}$ with ${d_{\rm{1}}} = 50 \;{\rm{cm}}$.

    图 3  $T_{\rm{r}}^{} = 16 \;{\rm{MK}}$, ${\rho _{\rm{1}}} = 0.15\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$条件下, ${\rm{0}}.02 \;{\text{μs}}$时网格的温度、速度、密度和压强随网格编号n的变化

    Figure 3.  Temperature, velocity, density and pressure versus cell number n at 0.02 μs under the condition of $T_{\rm{r}}^{} = 16 \;{\rm{MK}}$ and ${\rho _{\rm{1}}} = 0.15\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{ - 3}}$.

    图 4  理论预测(取$\xi = \eta = 1$)的(a)折返时间和(b)折返距离随辐射源温度${T_{\rm{r}}}$的变化

    Figure 4.  Theoretical prediction (with $\xi = \eta = 1$) of (a) reverse time and (b) reverse distance versus ${T_{\rm{r}}}$.

    图 5  折返时间和折返距离分别在不同的密度$ {\rho _{\rm{1}}}$(a) 0.05, (b) 0.5, (c) 1 g·cm–3下与辐射源温度Tr的变化关系; (d) 参数ξη$ {\rho _{\rm{1}}}$的变化

    Figure 5.  Reverse time and distance versus Tr under different density $ {\rho _{\rm{1}}}$ of (a) 0.05, (b) 0.5, and (c) 1 g·cm–3. (d) ξ and η versus $ {\rho _{\rm{1}}}$.

    图 6  折返时间和折返距离的(a)峰值温度${T_{\rm{m}}}$和(b)峰值温度的三次方$T_{\rm{m}}^{\rm{3}}$随密度${\rho _{\rm{1}}}$的变化

    Figure 6.  (a) The peak temperature ${T_{\rm{m}}}$ and (b) $T_{\rm{m}}^{\rm{3}}$ of reverse time and distance versus ${\rho _{\rm{1}}}$.

    图 A1  (a)辐射温度和Au等离子体密度的空间分布; (b)$ {t_{\rm{s}}} $随辐射源温度${T_{\rm{r}}}$的变化; (c)烧蚀压和(d)烧蚀质量随时间的变化

    Figure A1.  (a) Temperature and density versus distance; (b)${t_{\rm{s}}}$ versus ${T_{\rm{r}}}$; (c) ablation pressure versus time; (d) ablated mass versus time.

    表 A1  bl的拟合值随${T_{\rm{r}}}$的变化

    Table A1.  b and l versus ${T_{\rm{r}}}$

    ${T_{\rm{r}}}$/MKbl$l - b$
    6–0.478170.536631.01480
    8–0.474790.528831.00362
    10–0.468180.521920.99009
    12–0.476330.516260.99259
    14–0.471610.511220.98283
    16–0.470830.507640.97846
    DownLoad: CSV
  • [1]

    Davidson R C 2004 National Task Force on High Energy Density Physics (Washington, DC: Office of Science and Technology Policy) pp1, 2

    [2]

    Meng G W, Wang J G, Wang X R, Li J H, Zhang W Y 2016 Matter Rad. Extremes 1 249Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Hann S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [4]

    Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar

    [5]

    Ensman L, Burrows A 1992 Astrophys. J. 393 742Google Scholar

    [6]

    Blondin J M, Wright E B, Borkowski K J, Reynolds S P 1998 Astrophys. J. 500 342Google Scholar

    [7]

    Vink J 2012 Astron. Astrophys. Rev. 20 49Google Scholar

    [8]

    Laming J M, Grun J 2002 Phys. Rev. Lett. 89 125002Google Scholar

    [9]

    Pound M W, Kane J O, Ryutov D D, Remington B A, Mizuta A 2007 Astrophys. Space Sci. 307 187Google Scholar

    [10]

    Mizuta A, Kane J O, Pound M W, Remington B A, Ryutov D D, Takabe H 2006 Astrophys. J. 647 1151Google Scholar

    [11]

    Armitage P J, Livio M 1998 Astrophys. J. 493 898Google Scholar

    [12]

    Maccarone T J 2014 Space Sci. Rev. 183 101Google Scholar

    [13]

    Marshak R E 1958 Phys. Fluids 1 24Google Scholar

    [14]

    Zeldovich Y B, Raizer Y P 1967 Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Part II (New York: Academic) pp238-240

    [15]

    Meng G W, Li J H, Yang J M, Zhu T, Zou S Y, Wang M, Zhang W Y 2013 Phys. Plasmas 20 092704Google Scholar

    [16]

    Pakula R, Sigel R 1985 Phys. Fluids 28 232Google Scholar

    [17]

    Shussman T, Heizler S I 2015 Phys. Plasmas 22 082109Google Scholar

    [18]

    Kaiser N, Meyer-ter-Vehn J, Sigel R 1989 Phys. Fluids B 1 1747

    [19]

    Hammer J H, Rosen M D 2003 Phys. Plasmas 10 1829Google Scholar

    [20]

    Hurricane O A, Hammer J H 2006 Phys. Plasmas 13 113303Google Scholar

    [21]

    Back C A, Bauer J D, Landen O L, Turner R E, Lasinski B F, Hammer J H, Rosen M D, Suter L J, Hsing W H 2000 Phys. Rev. Lett. 84 274Google Scholar

    [22]

    Back C A, Bauer J D, Hammer J H, Lasinski B F, Turner R E, Rambo P W, Landen O L, Suter L J, Rosen M D, Hsing W H 2000 Phys. Plasmas 7 2126Google Scholar

    [23]

    Hoarty D, Willi O, Barringer L, Vickers C, Watt R, Nazarov W 1999 Phys. Plasmas 6 2171Google Scholar

    [24]

    Guymer T M, Moore A S, Morton J, Kline J L, Allan S, Bazin N, Benstead J, Bentley C, Comley A J, Cowan J, Flippo K, Garbett W, Hamilton C, Lanier N E, Mussack K, Obrey K, Reed L, Schmidt D W, Stevenson R M, Taccetti J M, Workman J 2015 Phys. Plasmas 22 043303Google Scholar

    [25]

    李三伟, 杨东, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202

    Li S W, Yang D, Li X, et al. 2018 Sci. Sin.: Phys. Mech. Astron. 48 065202

    [26]

    蓝可, 贺贤土, 赖东显, 李双贵 2006 物理学报 55 3789Google Scholar

    Lan K, He X T, Lai D X, Li S G 2006 Acta Phys. Sin. 55 3789Google Scholar

    [27]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wikens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311Google Scholar

    [28]

    Orzechowski T J, Rosen M D, Kornblum H N, Porter J L, Suter L J, Thiessen A R, Wallace R J 1996 Phys. Rev. Lett. 77 3545Google Scholar

    [29]

    Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702Google Scholar

    [30]

    Cooper A B R, Schneider M B, MacLaren S A, Moore A S, Young P E, Hsing W W, Seugling R, Foord M E, Sain J D, May M J, Marrs R E, Maddox B R, Lu K, Dodson K, Smalyuk V, Graham P, Foster J M, Back C A, Hund J F 2013 Phys. Plasmas 20 033301Google Scholar

    [31]

    Moore A S, Cooper A B R, Schneider M B, MacLaren S, Graham P, Lu K, Seugling R, Satcher J, Klingmann J, Comely A J, Marrs R, May M, Widmann K, Glendinning G, Castor J, Sain J, Back C A, Hund J, Baker K, Hsing W W, Foster J, Young B, Young P 2014 Phys. Plasmas 21 063303Google Scholar

    [32]

    Meng G W, Zou S Y, Wang M 2019 Phys. Plasmas 26 022708Google Scholar

    [33]

    Hall G N, Jones O S, Strozzi D J, Moody J D, Turnbull D, Ralph J, Michel P A, Hohenberger M, Moore A S, Landen O L, Divol L, Bradley D K, Hinkel D E, Mackinnon A J, Town R P J, Meezan N B, Hopkins L B, Izumi N 2017 Phys. Plasmas 24 052706Google Scholar

    [34]

    Schneider M B, MacLaren S A, Widmann K, Meezan N B, Hammer J H, Yoxall B E, Bell P M, Benedetti L R, Bradley D K, Callahan D A, Dewald E L, Doppner T, Eder D C, Edwards M J, Guymer T M, Hinkel D E, Hohenberger M, Hsing W W, Kervin M L, Kikenny J D, Landen O L, Lindl J D, May M J, Michel P, Milovich J L, Moody J D, Moore A S, Ralph J E, Regan S P, Thomas C A, Wan A S 2015 Phys. Plasmas 22 122705Google Scholar

    [35]

    Lan K, Liu J, Li Z C, Xie X F, Huo W Y, Chen Y H, Ren G L, Zheng C Y, Yang D, Li S W, Yang Z W, Guo L, Li S, Zhang M Y, Han X Y, Zhai C L, Hou L F, Li Y K, Deng K L, Yuan Z, Zhan X Y, Wang F, Yuan G H, Zhang H J, Jiang B B, Huang L Z, Zhang W, Du K, Zhao R C, Li P, Wang W, Su J Q, Deng X W, Hu D X, Zhou W, Jia H T, Ding Y K, Zheng W G, He X T 2016 Matter Radiat. Extremes 1 8Google Scholar

    [36]

    曾先才, 姜荣洪, 常铁强 1991 强激光与粒子束 3 477

    Zeng X C, Jiang R H, Chang T Q 1991 High Power and Particle Beams 3 477

    [37]

    Ramis R, Schmalz R, Meyer-ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [38]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [39]

    Ramis R 2017 J. Comput. Phys. 330 173Google Scholar

    [40]

    Pasley J, Nilson P, Willingale L, Haines M G, Notley M, Tolley M, Neely D, Nazarov W, Willi O 2006 Phys. Plasmas 13 032702Google Scholar

  • [1] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] Lu Yun-Jie, Tao Tao, Zhao Bin, Zheng Jian. Separation of ion component from solid hydrocarbon materials by laser ablation. Acta Physica Sinica, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [3] Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun. Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [4] Zhang Jie, Zhong Hao-Wen, Shen Jie, Liang Guo-Ying, Cui Xiao-Jun, Zhang Xiao-Fu, Zhang Gao-Long, Yan Sha, Yu Xiao, Le Xiao-Yun. Characteristics of metal ablation product by intense pulsed ion beam irradiation. Acta Physica Sinica, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [5] Cai Song, Chen Gen-Yu, Zhou Cong, Zhou Feng-Lin, Li Guang. Research and application of plasma recoil pressure physical model for pulsed laser ablation material. Acta Physica Sinica, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] Liang Yi-Han, Hu Guang-Yue, Yuan Peng, Wang Yu-Lin, Zhao Bin, Song Fa-Lun, Lu Quan-Ming, Zheng Jian. Temporal evolutions of the plasma density and temperature of laser-produced plasma expansion in an external transverse magnetic field. Acta Physica Sinica, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [7] Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Wang Wei, Meng Xiang-Fu, Xie Zhi-Yong, Wang Shi-Ji. Diagnosis of high-Z plasma with soft X-ray laser probe. Acta Physica Sinica, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [8] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [9] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock pressure in femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [10] Chang Hao, Jin Xing, Chen Zhao-Yang. Numerical simulation of nanosecond laser ablation impulse coupling. Acta Physica Sinica, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [11] Chen Ming, Li Shuang, Cui Qing-Qiang, Liu Xiang-Dong. Effect of laser-induced zinc micro-spheres on enhanced absorption of subsequent pulse laser. Acta Physica Sinica, 2013, 62(16): 165202. doi: 10.7498/aps.62.165202
    [12] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [13] Zhang Lu, Yang Jia-Min. Pressure increase in foam-solid target from X-ray driven shock waves. Acta Physica Sinica, 2012, 61(4): 045203. doi: 10.7498/aps.61.045203
    [14] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [15] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical research on intense pulsed ion beam ablation plasma expansion into ambient gases. Acta Physica Sinica, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [16] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [17] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Two-dimension numerical research on the ablation of target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [18] Zhang Duan-Ming, Hou Si-Pu, Guan Li, Zhong Zhi-Cheng, Li Zhi-Hua, Yang Feng-Xia, Zheng Ke-Yu. Target ablation characteristics during pulsed laser deposition of thin films. Acta Physica Sinica, 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [19] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
    [20] ZHANG JUN, PEI WEN-BING, GU PEI-JUN, SUI CHENG-ZHI, CHANG TIE-QIANG. SELF-MODIFIED QUASI-STATIONARY MODEL FOR THE RADIATION ABLATION. Acta Physica Sinica, 1996, 45(10): 1677-1687. doi: 10.7498/aps.45.1677
Metrics
  • Abstract views:  7240
  • PDF Downloads:  65
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2018
  • Accepted Date:  15 July 2019
  • Available Online:  01 September 2019
  • Published Online:  20 September 2019

/

返回文章
返回