Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic monopole array model for modeling ship magnetic signatures

Guo Cheng-Bao Yin Qi-Qi

Citation:

Magnetic monopole array model for modeling ship magnetic signatures

Guo Cheng-Bao, Yin Qi-Qi
PDF
HTML
Get Citation
  • Aiming at the problems of low accuracy and low adaptability of the existing ship magnetic field inversion modeling methods with equivalent sources, a new method of inversion modeling of magnetic monopole array of ship magnetic fields is proposed. Three-dimensional ship magnetic monopole array is arranged according to the ship ferromagnetic structure, and the inversion prediction model of ship magnetic fields is established by regularization technology. Three typical forms of magnetic monopole arrays are established: rectangular magnetic monopole array on the horizontal surface of the draft line, cuboid magnetic monopole array enclosing the ship hull, three-dimensional ship magnetic monopole array distributed according to the ship’s ferromagnetic structure. The theoretical analysis shows that the three-dimensional ship magnetic monopole array reduces the blindness of the equivalent magnetic source setting, and the obtained equivalent magnetic source is highly consistent with the real magnetic source, which can reproduce the complete magnetic field information of the ship to a greater extent. The magnetic field of a typical virtual ship is applied to the validation test. The results show that the proposed three-dimensional ship magnetic monopole array has higher precision and adaptability than the rectangular or cuboid magnetic monopole array. In particular, the proposed three-dimensional ship magnetic monopole array can realize the mutual conversion between the near and far magnetic fields, and between the magnetic fields above and below the ship. The proposed three-dimensional ship magnetic monopole array model has the unique advantages of small complexity, simple modeling and flexible layout, and it provides an alternative method for the high-precision data processing and explanation to the inversion modeling of ship magnetic fields, ship magnetic field positioning, et al.
      Corresponding author: Guo Cheng-Bao, 13720398858@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51277176).
    [1]

    Holmes J J 2007 Modeling A Ships Ferromagnetic Signatures (Maryland: Morgan & Claypool Publishers) p3

    [2]

    Holmes J J 2008 Reduction of a Ships Magnetic Field Signatures (Maryland: Morgan & Claypool Publishers) p8

    [3]

    Nixon D A, Baker F E 1981 J. Appl. Phys. 52 539Google Scholar

    [4]

    Kildishev A V, Nyenhuis J A, Morgan M A 2002 IEEE Trans. Magn. 38 2465Google Scholar

    [5]

    陈杰, 鲁习文 2009 物理学报 58 3839Google Scholar

    Chen J, Lu X W 2009 Acta Phys. Sin. 58 3839Google Scholar

    [6]

    Synnes S A 2008 IEEE Trans. Magn. 44 2277Google Scholar

    [7]

    Kamondetdacha R, Kildishev A V, Nyenhuis J A 2004 IE EE Trans. Magn. 40 2176Google Scholar

    [8]

    蒋敏志,林春生 2003 武汉理工大学学报·信息与管理工程版 25 168

    Jiang M Z, Lin C S 2003 Journal of WUT (Information & Management Engineering) 25 168

    [9]

    隗燕琳, 陈敬超, 李贵乙, 王彦东, 曾小军 2017 计算机测量与控制 25 213

    Wei Y L, Chen J C, Li G Y, Wang Y D, Zeng X J 2017 Computer Measurement & Control 25 213

    [10]

    林春生, 龚沈光 2007 舰船物理场(北京: 兵器工业出版社) p233

    Lin C S, Gong S G 2007 Ships Physical Fields (Beijing: The Publishing House of Ordnance Industry) p233 (in Chinese)

    [11]

    戴忠华, 周穗华, 单珊 2018 电子学报 46 1524Google Scholar

    Dai Z H, Zhou S H, Shan S 2018 Acta Electronica Sinica 46 1524Google Scholar

    [12]

    吴志东, 周穗华, 郭虎生 2013 武汉理工大学学报 35 67Google Scholar

    Wu Z D, Zhou S H, Guo H S 2013 Journal of Wuhan University of Technology 35 67Google Scholar

    [13]

    Alqadah H F, Valdivia N P, Williams E G 2016 Progress In Electromagnetics Research B 65 109Google Scholar

    [14]

    Chadebec O, Coulomb J L, Bongiraud J P, Cauffet G, Thiec P L 2002 IEEE Trans. Magn. 38 1005Google Scholar

    [15]

    Chadebec O, Couloumb J L, Cauffet G, Bongiraud J P 2003 IEEE Trans. Magn. 39 1634Google Scholar

    [16]

    Vuillermet Y, Chadebec O, Coulomb J L, Rouve L L, Cauffet G, Bongiraud J P, Demilier L 2008 IEEE Trans. Magn. 44 1054Google Scholar

    [17]

    Yang C S, Lee K J, Jung G, Chung H J, Park J S, Kim D H 2008 J. Appl. Phys. 103 07D905Google Scholar

    [18]

    郭成豹, 肖昌汉, 刘大明 2008 物理学报 57 4182Google Scholar

    Guo C B, Xiao C H, Liu D M 2008 Acta Phys. Sin. 57 4182Google Scholar

    [19]

    Dirac P A M 1931 Proc. Roy. Soc. A 133 60Google Scholar

    [20]

    Dirac P A M 1948 Phys. Rev. 74 817Google Scholar

    [21]

    Tikhonov A N, Arsenin V Y 1977 Math. Comput. 32 491

    [22]

    Hansen P C, O'Leary D P 1993 SIAM J. Sci. Comput. 14 1487Google Scholar

    [23]

    郭成豹, 周炜昶 2017 兵工学报 38 1988Google Scholar

    Guo C B, Zhou W C 2017 Acta Armamentarii 38 1988Google Scholar

    [24]

    郭成豹, 刘大明 2012 兵工学报 33 912

    Guo C B, Liu D M 2012 Acta Armamentarii 33 912

    [25]

    郭成豹, 刘大明 2014 兵工学报 35 1638Google Scholar

    Guo C B, Liu D M 2014 Acta Armamentarii 35 1638Google Scholar

    [26]

    Chadebec O, Coulomb J, Janet F 2006 IEEE Trans. Magn. 42 515Google Scholar

    [27]

    Morandi A, Fabbri M, Ribani P L 2010 IEEE Trans. Magn. 46 3848Google Scholar

    [28]

    Zhao K Z, Vouvakis M N, Lee J F 2005 IEEE Trans. Electromagn. Compat. 47 763Google Scholar

  • 图 1  磁单极子模型

    Figure 1.  Magnetic monopole model.

    图 2  铁磁舰船航行通过一个磁传感器线阵

    Figure 2.  Ferromagnetic ship runs over a line array of magnetic sensors.

    图 3  铁磁舰船及其下方的虚拟磁传感器长方形阵列

    Figure 3.  Ferromagnetic ship stands over a virtual array of magnetic sensors.

    图 4  舰船结构上的磁单极子阵列分布

    Figure 4.  Magnetic monopole array in the geometry of ship.

    图 5  机组和推进轴的磁单极子分布

    Figure 5.  Magnetic monopoles for the engine block and the shaft.

    图 6  根据L曲线法得到正则化参数

    Figure 6.  Regularization parameter obtained by the L-curve method.

    图 7  舰船磁场预测值和测量值的对比

    Figure 7.  Comparison of predicted and measured values of ship's magnetic field.

    图 8  吃水线水平面上的长方形磁单极子阵列

    Figure 8.  Rectangular magnetic monopole array on the horizontal surface of the draft line.

    图 9  包围船体的长方体磁单极子阵列

    Figure 9.  Cuboid magnetic monopole array enclosing the ship hull.

    图 10  按照船体铁磁结构分布的三维船体磁单极子阵列

    Figure 10.  Three-dimensional ship magnetic monopole array distributed according to the ferromagnetic structure of the ship hull.

    图 11  舰船磁场测量点分布俯视图

    Figure 11.  Top view of the distribution of magnetic field measurement points on ship.

    图 12  舰船磁场测量点分布侧视图

    Figure 12.  Side view of distribution of magnetic field measurement points on ship.

    图 13  舰船磁场测量点分布后视图

    Figure 13.  Rear view of the distribution of magnetic field measurement points on ship.

    图 14  +1B深度典型测量点线上的舰船磁场预测值和真实值对比

    Figure 14.  Comparison of predicted and real values of ship's magnetic field on typical measuring point line in +1B depth.

    图 15  +2B深度典型测量点线上的舰船磁场预测值和真实值对比

    Figure 15.  Comparison of predicted and real values of ship's magnetic field on typical measuring point line in +2B depth.

    图 16  +5B深度典型测量点线上的舰船磁场预测值和真实值对比

    Figure 16.  Comparison of predicted and real values of ship's magnetic field on typical measuring point line in +5B depth.

    表 1  验证试验的计算结果

    Table 1.  Results of the validation test.

    测量深度阵列形式正则化参数$\alpha$相对残差/%相对误差/%
    +1B+2B+5B–2B–5B
    +1B长方形0.13234.654.568.2528.2395.00101.76
    长方体0.00690.080.080.030.248.503.65
    三维船体0.00300.050.040.010.035.490.50
    +2B长方形0.01772.1513.282.1410.0391.0685.98
    长方体0.00260.091.230.020.0916.303.64
    三维船体0.00200.090.650.010.037.051.64
    +5B长方形0.01903.6434.5119.153.6280.1578.21
    长方体0.00280.5011.072.280.0725.9911.68
    三维船体0.00210.495.550.940.0417.133.12
    –2B长方形0.00201.54190.80114.6892.251.546.62
    长方体0.00240.0815.435.652.410.030.05
    三维船体0.00260.1110.203.631.250.080.05
    –5B长方形0.02164.3990.3186.8186.2929.794.39
    长方体0.00340.4629.8120.9716.427.010.11
    三维船体0.00210.4415.368.995.183.510.06
    DownLoad: CSV
  • [1]

    Holmes J J 2007 Modeling A Ships Ferromagnetic Signatures (Maryland: Morgan & Claypool Publishers) p3

    [2]

    Holmes J J 2008 Reduction of a Ships Magnetic Field Signatures (Maryland: Morgan & Claypool Publishers) p8

    [3]

    Nixon D A, Baker F E 1981 J. Appl. Phys. 52 539Google Scholar

    [4]

    Kildishev A V, Nyenhuis J A, Morgan M A 2002 IEEE Trans. Magn. 38 2465Google Scholar

    [5]

    陈杰, 鲁习文 2009 物理学报 58 3839Google Scholar

    Chen J, Lu X W 2009 Acta Phys. Sin. 58 3839Google Scholar

    [6]

    Synnes S A 2008 IEEE Trans. Magn. 44 2277Google Scholar

    [7]

    Kamondetdacha R, Kildishev A V, Nyenhuis J A 2004 IE EE Trans. Magn. 40 2176Google Scholar

    [8]

    蒋敏志,林春生 2003 武汉理工大学学报·信息与管理工程版 25 168

    Jiang M Z, Lin C S 2003 Journal of WUT (Information & Management Engineering) 25 168

    [9]

    隗燕琳, 陈敬超, 李贵乙, 王彦东, 曾小军 2017 计算机测量与控制 25 213

    Wei Y L, Chen J C, Li G Y, Wang Y D, Zeng X J 2017 Computer Measurement & Control 25 213

    [10]

    林春生, 龚沈光 2007 舰船物理场(北京: 兵器工业出版社) p233

    Lin C S, Gong S G 2007 Ships Physical Fields (Beijing: The Publishing House of Ordnance Industry) p233 (in Chinese)

    [11]

    戴忠华, 周穗华, 单珊 2018 电子学报 46 1524Google Scholar

    Dai Z H, Zhou S H, Shan S 2018 Acta Electronica Sinica 46 1524Google Scholar

    [12]

    吴志东, 周穗华, 郭虎生 2013 武汉理工大学学报 35 67Google Scholar

    Wu Z D, Zhou S H, Guo H S 2013 Journal of Wuhan University of Technology 35 67Google Scholar

    [13]

    Alqadah H F, Valdivia N P, Williams E G 2016 Progress In Electromagnetics Research B 65 109Google Scholar

    [14]

    Chadebec O, Coulomb J L, Bongiraud J P, Cauffet G, Thiec P L 2002 IEEE Trans. Magn. 38 1005Google Scholar

    [15]

    Chadebec O, Couloumb J L, Cauffet G, Bongiraud J P 2003 IEEE Trans. Magn. 39 1634Google Scholar

    [16]

    Vuillermet Y, Chadebec O, Coulomb J L, Rouve L L, Cauffet G, Bongiraud J P, Demilier L 2008 IEEE Trans. Magn. 44 1054Google Scholar

    [17]

    Yang C S, Lee K J, Jung G, Chung H J, Park J S, Kim D H 2008 J. Appl. Phys. 103 07D905Google Scholar

    [18]

    郭成豹, 肖昌汉, 刘大明 2008 物理学报 57 4182Google Scholar

    Guo C B, Xiao C H, Liu D M 2008 Acta Phys. Sin. 57 4182Google Scholar

    [19]

    Dirac P A M 1931 Proc. Roy. Soc. A 133 60Google Scholar

    [20]

    Dirac P A M 1948 Phys. Rev. 74 817Google Scholar

    [21]

    Tikhonov A N, Arsenin V Y 1977 Math. Comput. 32 491

    [22]

    Hansen P C, O'Leary D P 1993 SIAM J. Sci. Comput. 14 1487Google Scholar

    [23]

    郭成豹, 周炜昶 2017 兵工学报 38 1988Google Scholar

    Guo C B, Zhou W C 2017 Acta Armamentarii 38 1988Google Scholar

    [24]

    郭成豹, 刘大明 2012 兵工学报 33 912

    Guo C B, Liu D M 2012 Acta Armamentarii 33 912

    [25]

    郭成豹, 刘大明 2014 兵工学报 35 1638Google Scholar

    Guo C B, Liu D M 2014 Acta Armamentarii 35 1638Google Scholar

    [26]

    Chadebec O, Coulomb J, Janet F 2006 IEEE Trans. Magn. 42 515Google Scholar

    [27]

    Morandi A, Fabbri M, Ribani P L 2010 IEEE Trans. Magn. 46 3848Google Scholar

    [28]

    Zhao K Z, Vouvakis M N, Lee J F 2005 IEEE Trans. Electromagn. Compat. 47 763Google Scholar

  • [1] WU Lielie, REN Yichong, Xue Fei. Ferromagnetic torsion pendulum oscillator based magnetic field measurement and its applications. Acta Physica Sinica, 2025, 74(3): 030701. doi: 10.7498/aps.74.20241538
    [2] Dai Zhong-Hua, Zhou Sui-Hua, Zhang Xiao-Bing. Multi-objective optimization of ship magnetic field modeling method. Acta Physica Sinica, 2021, 70(16): 164101. doi: 10.7498/aps.70.20210334
    [3] Wang Li, Liu Jing-Si, Li Ji, Zhou Xiao-Lin, Chen Xiang-Rong, Liu Chao-Fei, Liu Wu-Ming. The research progress of topological properties in spinor Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [4] Song Qi-Hui, Shi Wan-Yuan. Influence of horizontal static magnetic field on the stability of electromagnetic levitated Cu molten droplet. Acta Physica Sinica, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [5] Bi Chuan-Xing, Hu Ding-Yu, Zhang Yong-Bin, Xu Liang. Sound field separation technique based on equivalent source method and double-layer particle velocity measurements. Acta Physica Sinica, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [6] Shao Jian-Zhou, Wang Yong-Jiu. Acceleration effect in the gravitational field of black hole involving a global monopole. Acta Physica Sinica, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [7] Xiang Mao-Huai, Chen Ju-Hua, Wang Yong-Jiu. Accretion and radiation in black hole with a global monopole. Acta Physica Sinica, 2011, 60(9): 090401. doi: 10.7498/aps.60.090401
    [8] Chen Jie, Lu Xi-Wen. A new method for predicting the induced magnetic field of naval vessels. Acta Physica Sinica, 2010, 59(1): 239-245. doi: 10.7498/aps.59.239
    [9] Chen Jie, Lu Xi-Wen. A method for magnetic field prediction caused by naval vessels using magnetic charge distribution. Acta Physica Sinica, 2009, 58(6): 3839-3843. doi: 10.7498/aps.58.3839
    [10] Meng Qing-Miao, Su Jiu-Qing, Jiang Ji-Jian. Massive particle quantum tunneling radiation of Barriola-Vilenkin black hole with global monopole. Acta Physica Sinica, 2007, 56(7): 3723-3726. doi: 10.7498/aps.56.3723
    [11] Xu Guang-Ming, Zheng Jia-Wei, Liu Yong, Cui Jian-Zhong. The distribution of solute elements in AZ61 magnesium alloy under electromagnetic field. Acta Physica Sinica, 2007, 56(7): 4247-4251. doi: 10.7498/aps.56.4247
    [12] Bao Wei-Ping, Xu Guang-Ming, Ban Chun-Yan, Cui Jian-Zhong. Effect of magnetostatic field on the microstructure of magnesium alloy. Acta Physica Sinica, 2004, 53(6): 2024-2028. doi: 10.7498/aps.53.2024
    [13] Zhu Yun-Feng, Yu Hong-Wei. . Acta Physica Sinica, 2002, 51(9): 1933-1936. doi: 10.7498/aps.51.1933
    [14] Hu Guo-Qi, Li Kang. . Acta Physica Sinica, 2002, 51(6): 1208-1213. doi: 10.7498/aps.51.1208
    [15] LIN ZI-YANG, XIANG YING, ZHANG JIE-LI, MA SHI-YONG, XU ZE-DA. STUDY OF MAGNETICALLY INDUCED TWIST EFFECT IN PLANAR NEMATIC LIQUID CRYSTAL BY PHASE RETARDATION METHOD. Acta Physica Sinica, 1999, 48(10): 1898-1903. doi: 10.7498/aps.48.1898
    [16] LIU GONG-QIANG, CHEN S.TSAI. MAGNETOOPTIC EFFECTS AND PROPERTIES OF MAGNETOSTATIC WAVE PROPAGATION IN YIG-GGG WAVEGUIDE UNDER INCLINED BIAS MAGNETIC FIELD. Acta Physica Sinica, 1998, 47(6): 997-1005. doi: 10.7498/aps.47.997
    [17] LI YI-BING, LI SHAO-PING. MAGNETO-EXCHANGE MODES IN ANISOTROPIC MEDIA. Acta Physica Sinica, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [18] ZHANG PENG-XIANG, CAO KE-DING. STUDY MAGNETISM BY MAGNETOSTATIC WAVES. Acta Physica Sinica, 1985, 34(11): 1407-1412. doi: 10.7498/aps.34.1407
    [19] SHI KANG-JIE. THE GAUGE POTENTIAL OF MOVING MONOPOLE. Acta Physica Sinica, 1983, 32(11): 1426-1434. doi: 10.7498/aps.32.1426
    [20] JEN LANG. RADIATION FROM A LINEAR MONOPOLE ANTENNA AT THE TIP OF A METALLIC PROLATE SPHEROID. Acta Physica Sinica, 1963, 19(3): 169-175. doi: 10.7498/aps.19.169
Metrics
  • Abstract views:  9939
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2019
  • Accepted Date:  12 March 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回