Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-objective optimization of ship magnetic field modeling method

Dai Zhong-Hua Zhou Sui-Hua Zhang Xiao-Bing

Citation:

Multi-objective optimization of ship magnetic field modeling method

Dai Zhong-Hua, Zhou Sui-Hua, Zhang Xiao-Bing
PDF
HTML
Get Citation
  • Ship magnetic field modeling is not only beneficial to understanding the characteristics of ship magnetic field, but also can predict the space distribution of ship magnetic field, which has an important application in ship protection and underwater weapons. Aiming at the problems of low modeling accuracy and poor stability in establishing the ship magnetic field hybrid model, a method of establishing a high precision stablity model is proposed in this paper. A hybrid model of magnetic field of a ship is established by using a uniformly magnetized rotating ellipsoid and a magnetic dipole array. Since the number and positions of magnetic dipoles in the hybrid model have an important effect on the modeling accuracy and stability, the fitting error function representing the modeling accuracy and the coefficient matrix condition number function representing the stability of the model are constructed by taking the magnetic dipole parameters as unknown variables. The multi-objective function is constructed by combining the fitting error function with the coefficient matrix conditional number function, which indirectly transforms the modeling problem into a multi-objective optimization problem. The multi-objective function is solved by using the multi-objective particle swarm optimization algorithm, and an optional set of modeling solution results is obtained. In order to select the best results from the optional set, the corresponding selection rules are designed based on the modeling accuracy. The proposed method is validated by the measured data of three kinds of ship models, the modeling results show that the relative error of the model is less than 3%, and the conversion error is less than 6%, which verifies that the proposed method can effectively model the ship magnetic field. Though the measurement data error exists, the modeling solution results from the proposed method have the best stability, which verifies that the modeling method proposed in this work has good stability. Compared with the two existing modeling methods, the proposed method has very good modeling accuracy and stability. Finally, the actual data of a ship on the sea are used for modeling, and the modeling results further verify that the proposed method has high modeling accuracy and conversion accuracy, and can be effectively applied to the relevant projects.
      Corresponding author: Dai Zhong-Hua, 602024288@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51509252, 42074074)
    [1]

    林春生, 龚沈光 2007 舰船物理场 (第2版) 第51页

    Lin C S, Gong S G 2007 Ship Physical Field (2nd Ed.) (Beijing: Ordnance Industry Press) p51 (in Chinese)

    [2]

    林春生 1996 水雷战与舰船防护 3 54

    Lin C S 1996 Mine Warfare & Ship Self-Defence 3 54

    [3]

    Ginzburg B, Frumkis L, Kaplan B Z 2002 Sens. Actuators, A 102 67Google Scholar

    [4]

    Wahlström N, Gustafsson F 2014 IEEE Trans. Signal Process. 62 545Google Scholar

    [5]

    姚振宁, 刘大明, 刘胜道 2014 物理学报 22 227502Google Scholar

    Yao Z N, Liu D M, Liu S D 2014 Acta Phys. Sin. 22 227502Google Scholar

    [6]

    张宏欣, 周穗华, 张伽伟 2017 自动化学报 43 822Google Scholar

    Zhang H X, Zhou S H, Zhang J W 2017 Acta Autom. Sin. 43 822Google Scholar

    [7]

    戴忠华, 周穗华, 张宏欣 2019 电子学报 47 2457Google Scholar

    Dai Z H, Zhou S H, Zhang H X 2019 Acta Electron. Sin. 47 2457Google Scholar

    [8]

    Sui Y, Leslie K, Clark D 2017 IEEE Magn. Lett. 8 1Google Scholar

    [9]

    张晓峻, 康曦元, 樊黎明 2019 地球物理学报 62 1921Google Scholar

    Zhang X J, Kang X Y, Fan L M 2019 Acta Geophys. Sin. 62 1921Google Scholar

    [10]

    费春娇, 张群英, 吴佩霖 2018 电子与信息学报 11 2779Google Scholar

    Fei C J, Zhang Q Y, Wu P L 2018 J. Electron. Inf. Technol. 11 2779Google Scholar

    [11]

    陈路昭, 冯永强, 郭瑞杰 2020 电子与信息学报 42 573Google Scholar

    Chen L Z, Feng Y Q, Guo R J 2020 J. Electron. Inf. Technol. 42 573Google Scholar

    [12]

    高俊杰, 刘大明, 姚琼 2006 兵工学报 27 869Google Scholar

    Gao J J, Liu D M, Yao Q 2006 Acta Armamentarii 27 869Google Scholar

    [13]

    郭成豹, 肖昌汉, 刘大明 2008 物理学报 07 4182Google Scholar

    Guo C B, Xiao H C, Liu D M 2008 Acta Phys. Sin. 07 4182Google Scholar

    [14]

    闫辉, 肖昌汉, 周国华 2008 兵工学报 07 839Google Scholar

    Yan H, Xiao H C, Zhou G H 2008 Acta Armamentarii 07 839Google Scholar

    [15]

    王德强, 余强 2014 舰船科学技术 36 1Google Scholar

    Wang D Q, Yu Q 2014 Ship Sci. Technol. 36 1Google Scholar

    [16]

    Holmes J J 2006 Synth. Lect. Comput. Electromagnet. 1 1Google Scholar

    [17]

    Holmes J J 2007 Synth. Lect. Comput. Electromagnet. 2 1Google Scholar

    [18]

    杨明明, 刘大明, 刘胜道, 连丽婷 2010 兵工学报 9 1216

    Yang M M, Liu D M, Liu S D, Lian L T 2010 Acta Armamentarii 9 1216

    [19]

    王金根, 龚沈光, 刘胜道 2001 海军工程大学学报 3 49Google Scholar

    Wang J G, Gong S G, Liu S D 2001 J. Naval Univ. Eng. 3 49Google Scholar

    [20]

    刘胜道, 刘大明, 肖昌汉 2008 武汉理工大学学报 (交通科学与工程版) 6 1017

    Liu S D, Liu D M, Xiao H C 2008 J. Wuhan Univ. Technol.(Transp. Sci. Eng.) 6 1017

    [21]

    徐杰, 刘大明, 周国华 2009 舰船科学技术 01 156Google Scholar

    Xu J, Liu D M, Zhou G H 2009 Ship Sci. Technol. 01 156Google Scholar

    [22]

    王桓, 周耀忠, 周国华 2007 海军工程大学学报 01 105Google Scholar

    Wang H, Zhou Y Z, Zhou G H 2007 J. Naval Univ. Eng. 01 105Google Scholar

    [23]

    张朝阳, 肖昌汉, 徐杰 2010 华中科技大学学报(自然科学版) 11 124Google Scholar

    Zhang C Y, Xiao H C, Xu J 2010 J. Huazhong Univ. Sci. Technol. (Nat. Sci. Edition) 11 124Google Scholar

    [24]

    吴志东, 周穗华, 郭虎生 2013 武汉理工大学学报 09 67Google Scholar

    Wu Z D, Zhou S H, Guo H S 2013 J. Wuhan Univ. Technol. 09 67Google Scholar

    [25]

    戴忠华, 周穗华, 单珊 2018 电子学报 46 1524Google Scholar

    Dai Z H, Zhou S H, Shan S 2018 Acta Electron. Sin. 46 1524Google Scholar

    [26]

    郭成豹, 殷琦琦 2019 物理学报 68 114101Google Scholar

    Guo C B, Yin Q Q 2019 Acta Phys. Sin. 68 114101Google Scholar

    [27]

    Alqadah H F, Valdivia N P, Williams E G 2016 Prog. Electromagnet. Res. B 65 109Google Scholar

    [28]

    Vuillermet Y, Chadebec O, Coulomb J L, Rouve L L, Cauffet G, Bongiraud J P, Demilier L 2008 IEEE Trans. Magn. 44 1054Google Scholar

    [29]

    Coello C A C 2006 IEEE Comput. Intell. Mag. 1 28Google Scholar

    [30]

    Dorigo M, Gambardella L M 1997 IEEE Trans. Evol. Comput. 1 53Google Scholar

    [31]

    Bandyopadhyay S, Saha S, Maulik U, Deb K 2008 IEEE Trans. Evol. Comput. 12 269Google Scholar

    [32]

    Coello C A C, Pulido G T, Lechuga M S 2004 IEEE Trans. Evol. Comput. 8 256Google Scholar

    [33]

    公茂果, 焦李成, 杨咚咚, 马文萍 2009 软件学报 20 271Google Scholar

    Gong M G, Jiao L C, Yang D D, Ma W P 2009 J. Software 20 271Google Scholar

    [34]

    Kennedy J 1995 Process of IEEE International Conference on Neural Networks Perth Australia, November 27, 1995 4 1942

  • 图 1  舰船磁场混合模型

    Figure 1.  Ship magnetic field mixing model.

    图 2  磁场测量

    Figure 2.  Magnetic field measurement.

    图 3  混合模型中磁偶极子分布范围

    Figure 3.  Distribution range of magnetic dipoles in the mixed model.

    图 4  测量模式

    Figure 4.  Measurement mode.

    图 5  小型舰船建模结果可选集分布

    Figure 5.  Selectable distribution of modeling results for small ships.

    图 7  大型舰船建模结果可选集分布

    Figure 7.  Selectable distribution of modeling results for large ships.

    图 6  中型舰船建模结果可选集分布

    Figure 6.  Selectable distribution of modeling results for medium-sized ships.

    图 8  小型舰船船模磁偶极子分布情况

    Figure 8.  Distribution of magnetic dipole of small ship model.

    图 9  中型舰船船模磁偶极子分布情况

    Figure 9.  Distribution of magnetic dipole of medium ship model

    图 10  大型舰船船模磁偶极子分布情况

    Figure 10.  Distribution of magnetic dipoles of large ship models.

    图 11  干扰下不同方法求解的小型舰船磁矩绝对误差 (a) x方向磁矩绝对误差$\Delta {m_x}$; (b) y方向磁矩绝对误差$\Delta {m_y}$; (c) z方向磁矩绝对误差$\Delta {m_z}$

    Figure 11.  Absolute errors of magnetic moment of small ships solved by different methods under disturbance: (a) Absolute errors of magnetic moment in x-direction; (b) absolute errors of magnetic moment in y-direction; (c) absolute errors of magnetic moment in z-direction.

    图 12  干扰下不同方法求解的中型舰船磁矩绝对误差 (a) x方向磁矩绝对误差$\Delta {m_x}$; (b) y方向磁矩绝对误差$\Delta {m_y}$; (c) z方向磁矩绝对误差$\Delta {m_z}$

    Figure 12.  Absolute error of magnetic moment of medium ship solved by different methods under disturbance: (a) Absolute errors of magnetic moment in x-direction; (b) absolute errors of magnetic moment in y-direction; (c) absolute errors of magnetic moment in z-direction.

    图 13  干扰下不同方法求解的大型舰船磁矩绝对误差 (a) x方向磁矩绝对误差$ \Delta {m_x}$; (b) y方向磁矩绝对误差$ \Delta {m_y}$; (c) z方向磁矩绝对误差$ \Delta {m_z}$

    Figure 13.  Absolute errors of magnetic moment of large ships solved by different methods under disturbance: (a) Absolute errors of magnetic moment in x-direction; (b) absolute errors of magnetic moment in y-direction; (c) absolute errors of magnetic moment in z-direction.

    图 14  测量场景示意图

    Figure 14.  The schematic diagram of measurement scene.

    表 1  试验参数

    Table 1.  Test parameters.

    目标尺度参数/m 测量深度/m航迹1/m航迹2/m航迹3/m
    LW${Z_0}$${Z_1}$
    小型船模57.28.6 8.617X = –80:2:80,
    Y = –4.2
    X = – 80:2:80,
    Y = 0
    X = – 80:2:80,
    Y = 4.2
    中型船模76.58.5 12.7520.5X = –100:2.5:100,
    Y =–15
    X = –100:2.5:100,
    Y = 0
    X = –100:2.5:100,
    Y = 15
    大型船模15317.3 17.228.8X = –128:3.2:128,
    Y = –8.64
    X = –128:3.2:128,
    Y = 0
    X = –128:3.2:128,
    Y = 8.64
    DownLoad: CSV

    表 2  Z0深度平面上的三种舰船船模建模结果

    Table 2.  Modeling results of three kinds of ships on the Z0 depth plane.

    目标小型舰船中型舰船大型舰船
    磁偶极子数10814
    系数矩阵条件数85.1376.5128.95
    建模相对误差0.02950.02900.0256
    DownLoad: CSV

    表 3  不同深度的建模相对误差和换算相对误差

    Table 3.  Modeling relative errors and converted relative errors of different depths.

    目标建模深度/m换算深度/m相对误差
    小型舰船8.68.60.0295
    170.0402
    178.60.0479
    170.0256
    中型舰船12.7512.750.0290
    20.50.0323
    20.512.750.0387
    20.50.0201
    大型舰船17.217.20.0256
    28.80.0301
    28.817.20.0547
    28.80.0152
    DownLoad: CSV

    表 4  不同方法的建模相对误差和换算相对误差

    Table 4.  Modeling relative error and conversion relative error of different methods.

    目标文献[1]文献[25]本文方法
    小型舰船磁偶极子数101010
    系数矩阵条件数1.28 × 10334.6585.13
    建模相对误差17 m0.04640.10710.0295
    8.6 m0.04500.04580.0256
    换算相对误差8.6 m→17 m0.06090.09130.0402
    17 m→8.6 m0.12080.15230.0497
    中型舰船磁偶极子数888
    系数矩阵条件数709.828.0276.5
    建模相对误差20.5 m0.05680.06190.0290
    12.75 m0.06550.08720.0201
    换算相对误差12.75 m→20.5 m0.0770.17260.0323
    20.5 m→12.75 m0.1290.13170.0387
    大型舰船磁偶极子数141414
    系数矩阵条件数2.36 × 10378.29128.95
    建模相对误差28.8 m0.09910.13020.0256
    17.2 m0.05250.06020.0152
    换算相对误差17.2 m→28.8 m0.09840.10330.0301
    28.8 m→17.2 m0.17690.17820.0547
    DownLoad: CSV

    表 5  干扰下不同方法的建模相对误差和换算误差

    Table 5.  Modeling relative errors and conversion errors of different methods under interference.

    目标相对误差
    文献[1]文献[25]本文方法
    小型舰船未加干扰0.04640.10710.0295
    加干扰0.08500.11670.0378
    中型舰船未加干扰0.05680.06190.0290
    加干扰0.11790.07540.0313
    大型舰船未加干扰0.09910.13020.0256
    加干扰0.12560.14190.0303
    DownLoad: CSV

    表 6  真实舰船测量数据建模结果

    Table 6.  Modeling results of real ship measurement data.

    航向建模相对误差换算误差
    东航向0.02430.0543
    西航向0.02570.0621
    南航向0.02360.0325
    北航向0.02760.0421
    DownLoad: CSV
  • [1]

    林春生, 龚沈光 2007 舰船物理场 (第2版) 第51页

    Lin C S, Gong S G 2007 Ship Physical Field (2nd Ed.) (Beijing: Ordnance Industry Press) p51 (in Chinese)

    [2]

    林春生 1996 水雷战与舰船防护 3 54

    Lin C S 1996 Mine Warfare & Ship Self-Defence 3 54

    [3]

    Ginzburg B, Frumkis L, Kaplan B Z 2002 Sens. Actuators, A 102 67Google Scholar

    [4]

    Wahlström N, Gustafsson F 2014 IEEE Trans. Signal Process. 62 545Google Scholar

    [5]

    姚振宁, 刘大明, 刘胜道 2014 物理学报 22 227502Google Scholar

    Yao Z N, Liu D M, Liu S D 2014 Acta Phys. Sin. 22 227502Google Scholar

    [6]

    张宏欣, 周穗华, 张伽伟 2017 自动化学报 43 822Google Scholar

    Zhang H X, Zhou S H, Zhang J W 2017 Acta Autom. Sin. 43 822Google Scholar

    [7]

    戴忠华, 周穗华, 张宏欣 2019 电子学报 47 2457Google Scholar

    Dai Z H, Zhou S H, Zhang H X 2019 Acta Electron. Sin. 47 2457Google Scholar

    [8]

    Sui Y, Leslie K, Clark D 2017 IEEE Magn. Lett. 8 1Google Scholar

    [9]

    张晓峻, 康曦元, 樊黎明 2019 地球物理学报 62 1921Google Scholar

    Zhang X J, Kang X Y, Fan L M 2019 Acta Geophys. Sin. 62 1921Google Scholar

    [10]

    费春娇, 张群英, 吴佩霖 2018 电子与信息学报 11 2779Google Scholar

    Fei C J, Zhang Q Y, Wu P L 2018 J. Electron. Inf. Technol. 11 2779Google Scholar

    [11]

    陈路昭, 冯永强, 郭瑞杰 2020 电子与信息学报 42 573Google Scholar

    Chen L Z, Feng Y Q, Guo R J 2020 J. Electron. Inf. Technol. 42 573Google Scholar

    [12]

    高俊杰, 刘大明, 姚琼 2006 兵工学报 27 869Google Scholar

    Gao J J, Liu D M, Yao Q 2006 Acta Armamentarii 27 869Google Scholar

    [13]

    郭成豹, 肖昌汉, 刘大明 2008 物理学报 07 4182Google Scholar

    Guo C B, Xiao H C, Liu D M 2008 Acta Phys. Sin. 07 4182Google Scholar

    [14]

    闫辉, 肖昌汉, 周国华 2008 兵工学报 07 839Google Scholar

    Yan H, Xiao H C, Zhou G H 2008 Acta Armamentarii 07 839Google Scholar

    [15]

    王德强, 余强 2014 舰船科学技术 36 1Google Scholar

    Wang D Q, Yu Q 2014 Ship Sci. Technol. 36 1Google Scholar

    [16]

    Holmes J J 2006 Synth. Lect. Comput. Electromagnet. 1 1Google Scholar

    [17]

    Holmes J J 2007 Synth. Lect. Comput. Electromagnet. 2 1Google Scholar

    [18]

    杨明明, 刘大明, 刘胜道, 连丽婷 2010 兵工学报 9 1216

    Yang M M, Liu D M, Liu S D, Lian L T 2010 Acta Armamentarii 9 1216

    [19]

    王金根, 龚沈光, 刘胜道 2001 海军工程大学学报 3 49Google Scholar

    Wang J G, Gong S G, Liu S D 2001 J. Naval Univ. Eng. 3 49Google Scholar

    [20]

    刘胜道, 刘大明, 肖昌汉 2008 武汉理工大学学报 (交通科学与工程版) 6 1017

    Liu S D, Liu D M, Xiao H C 2008 J. Wuhan Univ. Technol.(Transp. Sci. Eng.) 6 1017

    [21]

    徐杰, 刘大明, 周国华 2009 舰船科学技术 01 156Google Scholar

    Xu J, Liu D M, Zhou G H 2009 Ship Sci. Technol. 01 156Google Scholar

    [22]

    王桓, 周耀忠, 周国华 2007 海军工程大学学报 01 105Google Scholar

    Wang H, Zhou Y Z, Zhou G H 2007 J. Naval Univ. Eng. 01 105Google Scholar

    [23]

    张朝阳, 肖昌汉, 徐杰 2010 华中科技大学学报(自然科学版) 11 124Google Scholar

    Zhang C Y, Xiao H C, Xu J 2010 J. Huazhong Univ. Sci. Technol. (Nat. Sci. Edition) 11 124Google Scholar

    [24]

    吴志东, 周穗华, 郭虎生 2013 武汉理工大学学报 09 67Google Scholar

    Wu Z D, Zhou S H, Guo H S 2013 J. Wuhan Univ. Technol. 09 67Google Scholar

    [25]

    戴忠华, 周穗华, 单珊 2018 电子学报 46 1524Google Scholar

    Dai Z H, Zhou S H, Shan S 2018 Acta Electron. Sin. 46 1524Google Scholar

    [26]

    郭成豹, 殷琦琦 2019 物理学报 68 114101Google Scholar

    Guo C B, Yin Q Q 2019 Acta Phys. Sin. 68 114101Google Scholar

    [27]

    Alqadah H F, Valdivia N P, Williams E G 2016 Prog. Electromagnet. Res. B 65 109Google Scholar

    [28]

    Vuillermet Y, Chadebec O, Coulomb J L, Rouve L L, Cauffet G, Bongiraud J P, Demilier L 2008 IEEE Trans. Magn. 44 1054Google Scholar

    [29]

    Coello C A C 2006 IEEE Comput. Intell. Mag. 1 28Google Scholar

    [30]

    Dorigo M, Gambardella L M 1997 IEEE Trans. Evol. Comput. 1 53Google Scholar

    [31]

    Bandyopadhyay S, Saha S, Maulik U, Deb K 2008 IEEE Trans. Evol. Comput. 12 269Google Scholar

    [32]

    Coello C A C, Pulido G T, Lechuga M S 2004 IEEE Trans. Evol. Comput. 8 256Google Scholar

    [33]

    公茂果, 焦李成, 杨咚咚, 马文萍 2009 软件学报 20 271Google Scholar

    Gong M G, Jiao L C, Yang D D, Ma W P 2009 J. Software 20 271Google Scholar

    [34]

    Kennedy J 1995 Process of IEEE International Conference on Neural Networks Perth Australia, November 27, 1995 4 1942

  • [1] Yan Yi-Zhu, Ding Shuai, Han Xu, Wang Bing-Zhong. Channel processing-based time-reversal method for multi-target tunable focusing. Acta Physica Sinica, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [2] Zhang Zhi-Yuan, Li Bing, Liu Shi-Qi, Zhang Hong-Lin, Hu Bin-Jie, Zhao De-Shuang, Wang Chu-Nan. Uniform and constant long-time wireless power transmission of multi-targets in local space based on time reversal. Acta Physica Sinica, 2022, 71(1): 014101. doi: 10.7498/aps.71.20211231
    [3] Research on Uniform and Constant Long-time Wireless Power Transmission of Multi-targets in Local Space Based on Time Reversal. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211231
    [4] Li Bing, Ma Meng-Chen, Lei Ming-Zhu. Hybrid algorithm for composite electromagnetic scattering from the multi-target on and above rough sea surface. Acta Physica Sinica, 2017, 66(5): 050301. doi: 10.7498/aps.66.050301
    [5] Pan Hui, Wang Liang, Wang Qiang-Long, Chen Li-Min, Jia Feng, Liu Zhen-Yu. Design of super-elliptical gradient coils based on multiple objective Pareto optimization method. Acta Physica Sinica, 2017, 66(9): 098301. doi: 10.7498/aps.66.098301
    [6] Ren Xin-Cheng, Zhu Xiao-Min, Liu Peng. Wide-band composite electromagnetic scattering from the earth soil surface and multiple targets shallowly buried. Acta Physica Sinica, 2016, 65(20): 204101. doi: 10.7498/aps.65.204101
    [7] Zang Rui, Wang Bing-Zhong, Ding Shuai, Gong Zhi-Shuang. Time reversal multi-target imaging technique based on eliminating the diffusion of the time reversal field. Acta Physica Sinica, 2016, 65(20): 204102. doi: 10.7498/aps.65.204102
    [8] Ma Ge, Hu Yue-Ming, Gao Hong-Xia, Li Zhi-Fu, Guo Qi-Wei. Physical total energy based objective function model for sparse reconstruction. Acta Physica Sinica, 2015, 64(20): 204202. doi: 10.7498/aps.64.204202
    [9] Liu Ya-Qi, Liu Cheng-Cheng, Zhao Yong-Jun, Zhu Jian-Dong. A blind beamforming algorithm for multitarget signals based on time-frequency analysis. Acta Physica Sinica, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [10] Xu Nian-Xi, Gao Jin-Song, Feng Xiao-Guo. Study on the optimal design of frequency selective surfaces based on the discrete particle swarm optimization. Acta Physica Sinica, 2014, 63(13): 138401. doi: 10.7498/aps.63.138401
    [11] Chen Han-Ying, Gao Pu-Zhen, Tan Si-Chao, Fu Xue-Kuan. Prediction method of flow instability based on multi-objective optimized extreme learning machine. Acta Physica Sinica, 2014, 63(20): 200505. doi: 10.7498/aps.63.200505
    [12] Dong Jian-Jun, Deng Bo, Cao Zhu-Rong, Jiang Shao-En. Deduction of temperature and density spatial profile for implosion core by multi-objective optimization. Acta Physica Sinica, 2014, 63(12): 125209. doi: 10.7498/aps.63.125209
    [13] Gao Hong-Yuan, Li Chen-Wan. Membrane-inspired quantum bee colony algorithm for multiobjective spectrum allocation. Acta Physica Sinica, 2014, 63(12): 128802. doi: 10.7498/aps.63.128802
    [14] Chai Zheng-Yi, Chen Liang, Zhu Si-Feng. Parameter optimization of cognitive engine based on chaos multi-objective immune algorithm. Acta Physica Sinica, 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [15] Zhao Liao-Ying, Ma Qi-Liang, Li Xiao-Run. Multi-spectral and panchromatic image fusion based on HIS-wavelet transform and MOPSO algorithm. Acta Physica Sinica, 2012, 61(19): 194204. doi: 10.7498/aps.61.194204
    [16] Zhou Jie, Liu Yuan-An, Wu Fan, Zhang Hong-Guang, Zu Yun-Xiao. Allocation of multi-objective cross-layer wireless sensor network resource based on chaotic parallel genetic algorithm. Acta Physica Sinica, 2011, 60(9): 090504. doi: 10.7498/aps.60.090504
    [17] Zhu Zhang-Ming, Wan Da-Jing, Yang Yin-Tang. An optimization model of wire size for multi-objective constraint. Acta Physica Sinica, 2010, 59(7): 4837-4842. doi: 10.7498/aps.59.4837
    [18] Wan Xiong, Yu Sheng-Lin, Wang Chang-Kun, Le Shu-Ping, Li Bing-Ying, He Xing-Dao. Emission spectral tomography algorithm based on multi-objective optimization and its application in plasma diagnosis. Acta Physica Sinica, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [19] Lu Ming-Zhu, Wan Ming-Xi, Shi Yu, Song Yan-Chun. . Acta Physica Sinica, 2002, 51(4): 928-934. doi: 10.7498/aps.51.928
    [20] SHEN JIN-YUAN, LIU YUE, CHANG SHENG-JIANG, JIA JIA, ZHANG WEN-WEI, ZHANG YAN-XIN, MU GUO-GUANG. CLASSIFICATION AND OPTOELECTRONICS IMPLEMENTA-TION OF MULTI-OBJECTS WITH ROTATION INVARIANCE BASED ON RBF FUNCTION. Acta Physica Sinica, 1998, 47(12): 1968-1975. doi: 10.7498/aps.47.1968
Metrics
  • Abstract views:  6105
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2021
  • Accepted Date:  12 March 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回