Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of super-elliptical gradient coils based on multiple objective Pareto optimization method

Pan Hui Wang Liang Wang Qiang-Long Chen Li-Min Jia Feng Liu Zhen-Yu

Citation:

Design of super-elliptical gradient coils based on multiple objective Pareto optimization method

Pan Hui, Wang Liang, Wang Qiang-Long, Chen Li-Min, Jia Feng, Liu Zhen-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The design of gradient coils for a magnetic resonance imaging (MRI) system is a multiple objective optimization problem, which usually needs to deal with a couple of conflicting design objectives, such as the stored magnetic energy, power consumption, and target linear gradient distribution. These design requirements usually conflict with each other, and there is no unique optimal solution which is capable of minimizing all objectives simultaneously. Therefore, the design of gradient coils needs to be optimized reasonably with the tradeoff among different design objectives. Based on the developable property of the super-elliptical cylindrical surface and the stream function design method, the multiple objective optimization problem is analyzed by using the Pareto optimization method in this paper. The effect of proposed approach is illustrated by using the stream function method and three aforementioned coil design objectives are analyzed. The influences of the stored magnetic energy and power consumption target on linearity of gradient coil and the configuration of coils are analyzed respectively. The suitable sizes of gradient coils are discussed by analyzing the change of the stored magnetic energy. A weighted sum method is employed to produce the optimal Pareto solutions, in which the multiple objective problem reduces into a single objective function through a weighted sum of all objectives. The quantitative relationship of each design requirement is analyzed in the Pareto solution space, where Pareto optimal solutions can be intuitively found by dealing efficiently with the tradeoff among different coil properties. Numerical examples of super-elliptical gradient coil solutions are provided to demonstrate the effectiveness and versatility of the proposed method to design super-elliptical gradient coils with different coil requirements. The optimization results show that there are multiple available solutions in the convex Pareto solution space under the constraints that the linear gradient deviation is less than 5% and the magnetic stored energy and power dissipated are both no more than user-preset values. In the case that the values of summed objective functions are the same, the proposed method can intuitively see the performance of each individual target, thereby conducting to realizing the final design of gradient coils under the different design requirements. With the proposed approach, coil designers can have a reasonable overview of gradient coil design about the achievable performances of some specific properties and the competing or compatible relationships among coils properties. Therefore, a suitable design of the gradient coils for a given requirement of MRI application can be chosen reasonably.
      Corresponding author: Liu Zhen-Yu, liuzy@ciomp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675506, 51275504), the Science and Technology Development Plan of Jilin Province, China (Grant No. 20140519007JH), and an European Research Council Starting Grant RANGEmri(Grant Agreement 282345).
    [1]

    Zu D L 2004 Magnetic Resonance Imaging (Beijing: Higher Education Press) pp53-82 (in Chinese) [俎栋林 2004 核磁共振成像学(北京: 高等教育出版社)第5382页]

    [2]

    Wang L, Cao Y H, Jia F, Liu Z Y 2014 Acta Phys. Sin. 63 238301 (in Chinese) [王亮, 曹英晖, 贾峰, 刘震宇 2014 物理学报 63 238301]

    [3]

    Turner R 1986 J. Phys. D: Appl. Phys. 19 147

    [4]

    Turner R 1988 J. Phys. E: Sci. Instrum. 21 948

    [5]

    Forbes L K, Crozier S 2002 J. Phys. D: Appl. Phys. 35 839

    [6]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [7]

    Forbes L K, Brideson M A, Crozier S 2005 IEEE Trans. Magn. 41 2134

    [8]

    Liu W T, Zu D L, Tang X, Guo H 2007 J. Phys. D: Appl. Phys. 40 4418

    [9]

    Li X, Xie D X, Wang J M 2009 IEEE Trans. Magn. 45 1804

    [10]

    Tomasi D 2001 Magn. Reson. Med. 45 505

    [11]

    Peeren G N 2003 J. Comput. Phys. 191 305

    [12]

    Lemdiasov R A, Ludwig R 2005 Concepts Magn. Reson. B: Magn. Reson. Eng. 26B 67

    [13]

    Liu Z Y, Jia F, Hennig J, Korvink J G 2012 IEEE Trans. Magn. 48 1179

    [14]

    Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore: John Wiley Sons) pp39-142

    [15]

    Hu G L, Ni Z P, Wang Q L 2012 IEEE Trans. Appl. Supercond. 22 4900604

    [16]

    Zhu X C, Wang Q L, Wang H S 2016 Adv. Technol. Electral. Eng. Energ. 35 43 (in Chinese) [朱旭晨, 王秋良, 王厚生 2016 电工电能技术 35 43]

    [17]

    Li X, Xia L, Chen W F, Liu F, Crozier S, Xie D X 2011 J. Magn. Reson. 208 148

    [18]

    Hu Y, Wang Q L, Li Y, Zhu X C, Niu C Q 2016 Acta Phys. Sin. 65 218301 (in Chinese) [胡洋, 王秋良, 李毅, 朱旭晨, 牛超群 2016 物理学报 65 218301]

    [19]

    Turner R 1993 Magn. Reson. Imag. 11 903

    [20]

    Abduljalil A M, Aletras A H, Robilaille P M L 1994 Magn. Reson. Med. 31 450

    [21]

    Alsop D C, Connick T J 1996 Magn. Reson. Med. 35 875

    [22]

    Pissanetzky S 1992 Meas. Sci. Technol. 3 667

    [23]

    Bowtell R, Robyr P 1998 J. Magn. Reson. 131 286

    [24]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [25]

    Sanchez C C, Pantoja M F, Poole M, Bretones A R 2012 IEEE Trans. Magn. 48 1967

    [26]

    Marler R T, Arora J S 2004 Struct. Multid. Optim. 26 369

    [27]

    Marler R T, Arora J S 2005 Eng. Optim. 37 551

    [28]

    Xie D X, Sun X W, Bai B D, Yang S Y 2008 IEEE Trans. Magn. 44 1006

  • [1]

    Zu D L 2004 Magnetic Resonance Imaging (Beijing: Higher Education Press) pp53-82 (in Chinese) [俎栋林 2004 核磁共振成像学(北京: 高等教育出版社)第5382页]

    [2]

    Wang L, Cao Y H, Jia F, Liu Z Y 2014 Acta Phys. Sin. 63 238301 (in Chinese) [王亮, 曹英晖, 贾峰, 刘震宇 2014 物理学报 63 238301]

    [3]

    Turner R 1986 J. Phys. D: Appl. Phys. 19 147

    [4]

    Turner R 1988 J. Phys. E: Sci. Instrum. 21 948

    [5]

    Forbes L K, Crozier S 2002 J. Phys. D: Appl. Phys. 35 839

    [6]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701

    [7]

    Forbes L K, Brideson M A, Crozier S 2005 IEEE Trans. Magn. 41 2134

    [8]

    Liu W T, Zu D L, Tang X, Guo H 2007 J. Phys. D: Appl. Phys. 40 4418

    [9]

    Li X, Xie D X, Wang J M 2009 IEEE Trans. Magn. 45 1804

    [10]

    Tomasi D 2001 Magn. Reson. Med. 45 505

    [11]

    Peeren G N 2003 J. Comput. Phys. 191 305

    [12]

    Lemdiasov R A, Ludwig R 2005 Concepts Magn. Reson. B: Magn. Reson. Eng. 26B 67

    [13]

    Liu Z Y, Jia F, Hennig J, Korvink J G 2012 IEEE Trans. Magn. 48 1179

    [14]

    Wang Q L 2013 Practical Design of Magnetostatic Structure Using Numerical Simulation (Singapore: John Wiley Sons) pp39-142

    [15]

    Hu G L, Ni Z P, Wang Q L 2012 IEEE Trans. Appl. Supercond. 22 4900604

    [16]

    Zhu X C, Wang Q L, Wang H S 2016 Adv. Technol. Electral. Eng. Energ. 35 43 (in Chinese) [朱旭晨, 王秋良, 王厚生 2016 电工电能技术 35 43]

    [17]

    Li X, Xia L, Chen W F, Liu F, Crozier S, Xie D X 2011 J. Magn. Reson. 208 148

    [18]

    Hu Y, Wang Q L, Li Y, Zhu X C, Niu C Q 2016 Acta Phys. Sin. 65 218301 (in Chinese) [胡洋, 王秋良, 李毅, 朱旭晨, 牛超群 2016 物理学报 65 218301]

    [19]

    Turner R 1993 Magn. Reson. Imag. 11 903

    [20]

    Abduljalil A M, Aletras A H, Robilaille P M L 1994 Magn. Reson. Med. 31 450

    [21]

    Alsop D C, Connick T J 1996 Magn. Reson. Med. 35 875

    [22]

    Pissanetzky S 1992 Meas. Sci. Technol. 3 667

    [23]

    Bowtell R, Robyr P 1998 J. Magn. Reson. 131 286

    [24]

    Wang L Q, Wang W M 2014 Chin. Phys. B 23 028703

    [25]

    Sanchez C C, Pantoja M F, Poole M, Bretones A R 2012 IEEE Trans. Magn. 48 1967

    [26]

    Marler R T, Arora J S 2004 Struct. Multid. Optim. 26 369

    [27]

    Marler R T, Arora J S 2005 Eng. Optim. 37 551

    [28]

    Xie D X, Sun X W, Bai B D, Yang S Y 2008 IEEE Trans. Magn. 44 1006

  • [1] Zang Yu-Chen, Lin Wei-Jun, Su Chang, Wu Peng-Fei. Acoustic radiation torque on an off-axis elliptical cylinder in Gauss beams. Acta Physica Sinica, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [2] Zhao Chao-Ying, Fan Yu-Ting, Meng Yi-Chao, Guo Qi-Zhi, Tan Wei-Han. Orbital angular momentum mode of cylindrical spiral wave-guide. Acta Physica Sinica, 2020, 69(5): 054207. doi: 10.7498/aps.69.20190997
    [3] Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju, Wei De-Quan. Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder. Acta Physica Sinica, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [4] Huang Qing-Ming, Chen Shan-Shan, Zhang Jian-Qing, Yang Yang, Zheng Gang. Method of designing magnetic resonance active shimming coil based on target field point method and flow function. Acta Physica Sinica, 2019, 68(19): 198301. doi: 10.7498/aps.68.20190612
    [5] Tan Zhi-Zhong, Zhang Qing-Hua. Calculation of the equivalent resistance and impedance of the cylindrical network based on recursion-transform method. Acta Physica Sinica, 2017, 66(7): 070501. doi: 10.7498/aps.66.070501
    [6] Hu Yang, Wang Qiu-Liang, Li Yi, Zhu Xu-Chen, Niu Chao-Qun. Optimization of magnetic resonance imaging high-order axial shim coils using boundary element method. Acta Physica Sinica, 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [7] Zhu Guang, Liu Jian-Hua, Cheng Jun-Sheng, Feng Zhong-Kui, Dai Yin-Min, Wang Qiu-Liang. Effects of different coil combinations on the optimal design of a 25 T superconducting magnet. Acta Physica Sinica, 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [8] Hu Ge-Li, Ni Zhi-Peng, Wang Qiu-Liang. A target field method for designing cylindrical z-gradient coil combined with vibration control. Acta Physica Sinica, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [9] Wang Liang, Cao Ying-Hui, Jia Feng, Liu Zhen-Yu. Design of gradient coils on super-elliptical cylindrical surfaces. Acta Physica Sinica, 2014, 63(23): 238301. doi: 10.7498/aps.63.238301
    [10] Luo Jia-Qi, Liu Feng. Gradient-based response surface approximations for design optimization. Acta Physica Sinica, 2013, 62(19): 190201. doi: 10.7498/aps.62.190201
    [11] Fan Meng-Bao, Yin Ya-Dan, Cao Bing-Hua. Analytical modeling of coil impedance based on truncated region eigenfunction expansion method in eddy current tube inspection. Acta Physica Sinica, 2012, 61(8): 088105. doi: 10.7498/aps.61.088105
    [12] Wang Zhan, Dong Jian-Feng, Liu Jin-Jing, Luo Xiao-Yang. Design and study of elliptical cylinder external cloak based on line-transformation. Acta Physica Sinica, 2012, 61(20): 204101. doi: 10.7498/aps.61.204101
    [13] Gao Dong-Bao, Zeng Xin-Wu. Layered elliptical-cylindrical acoustic cloaking design based on isotropic materials. Acta Physica Sinica, 2012, 61(18): 184301. doi: 10.7498/aps.61.184301
    [14] Lu He-Lin, Wang Shun-Jin. Zonal flow dynamics in background of ion-temperature-gradient mode turbulence based on minimal freedom model. Acta Physica Sinica, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [15] Qian Jiang-Hai, Han Ding-Ding. Gravity model for spatial network based on optimal expected traffic. Acta Physica Sinica, 2009, 58(5): 3028-3033. doi: 10.7498/aps.58.3028
    [16] Shen Jie, Ning Rui-Peng, Liu Ying, Li Geng-Ying. A method for reducing eddy current induced by gradient coils. Acta Physica Sinica, 2006, 55(6): 3060-3066. doi: 10.7498/aps.55.3060
    [17] Zhang Chao-Ying, Li Hua-Bing, Tan Hui-Li, Liu Mu-Ren, Kong Ling-Jiang. Lattice Boltzmann simulations of moving elliptic cylinder in a Newtonian fluid. Acta Physica Sinica, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [18] Hou Chun-Feng, Guo Ru-Hai. Energy structures of the elliptic cylindrical quantum dots. Acta Physica Sinica, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [19] Zha Xue-Jun, Zhu Si-Zheng, Yu Qing-Quan. Equilibrium optimization code opeq and results of applying it to HT-7U. Acta Physica Sinica, 2003, 52(2): 428-433. doi: 10.7498/aps.52.428
    [20] . Acta Physica Sinica, 1964, 20(6): 571-575. doi: 10.7498/aps.20.571
Metrics
  • Abstract views:  6147
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2016
  • Accepted Date:  06 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回