Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-Objective and Multi-Constraint Optimization of Ultracold Molecular Orientation with a Limited Number of Rotational States

YU Zhenyang HONG Qianqian YI Yougen SHU Chuancun

Citation:

Multi-Objective and Multi-Constraint Optimization of Ultracold Molecular Orientation with a Limited Number of Rotational States

YU Zhenyang, HONG Qianqian, YI Yougen, SHU Chuancun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The design of shaped pulse fields for controlling molecular orientation has significant implications for stereochemical reactions, strong-field ionization, and quantum information processing. Traditional quantum optimal control algorithms typically address molecular orientation in an infinite-dimensional rotational space, yet they often overlook the constraints imposed by experimental limitations. In response, we propose a multi-objective and multi-constraint quantum optimal control algorithm aimed at designing pulse fields that adhere to constraints on pulse area and energy. Specifically, the algorithm enforces a zero pulse area condition to eliminate the static field component and maintains constant pulse energy, ensuring compatibility with realistic experimental setups. Under these constraints, the algorithm optimizes the population and phase distribution of a select number of low-lying rotational states in ultracold molecules to achieve maximum molecular orientation. The effectiveness of the proposed algorithm is demonstrated through numerical studies involving two- and three-state target subspaces, where the creation of a coherent superposition state with optimized population and phase distribution leads to the desired molecular orientation. Furthermore, its scalability is validated by application to a more complex 17-state subspace, where a maximum orientation value of 0.99055 is obtained, approaching the global optimal value of 1. Our findings demonstrate that by effectively managing these constraints, the influence of rotational states in the non-target state subspace can be substantially suppressed. A time-frequency analysis of the optimized pulses, coupled with the Fourier transform spectrum of the time-dependent degree of orientation, indicates that maximum molecular orientation is primarily attained through ladder-climbing excitation via multi-color pulse fields, with minimal contributions from highly excited states. This work serves as a valuable reference for designing experimentally feasible pulse fields using multi-constraint optimization algorithms, facilitating precise control over a limited number of rotational states to achieve maximum molecular orientation.
  • [1]

    Leroux I D, Schleier-Smith M H, Vuletić V 2010 Phys. Rev. Lett. 104250801

    [2]

    Luo S, Chen Z, Li X, Hu Z, Ding D 2019 Acta Opt. Sin. 390126007(in Chinese) [罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军2019光学学报390126007]

    [3]

    Lian Z, Luo S, Qi H, Chen Z, Shu C C, Hu Z 2023 Opt. Lett. 48411

    [4]

    Guo Y, Yang C, Xie X, Li Y, Houk K N, Guo X 2025 Sci. Adv. 11 eads0503

    [5]

    Dong B, Pei Y, Mansour N, Lu X, Yang K, Huang W, Fang N 2019 Nat. Commun. 104815

    [6]

    Cai M R, Ye C, Dong H, Li Y 2022 Phys. Rev. Lett. 129103201

    [7]

    Guo Y, Gong X, Ma S, Shu C C 2022 Phys. Rev. A 105013102

    [8]

    Liu Y, Meng J Q, Sun Z, Shu C C 2024 J. Phys. Chem. Lett. 158393

    [9]

    Ploenes L, Straňák P, Mishra A, Liu X, Pérez-Ríos J, Willitsch S 2024 Nat. Chem. 161876

    [10]

    Sawant R, Blackmore J A, Gregory P D, Mur-Petit J, Jaksch D, Aldegunde J, Hutson J M, Tarbutt M R, Cornish S L 2020 New J. Phys. 22013027

    [11]

    Ye J, Zoller P 2024 Phys. Rev. Lett. 132190001

    [12]

    Cornish S L, Tarbutt M R, Hazzard K R 2024 Nat. Phys. 20730

    [13]

    Ding M, Li J S, Deng J, Lee M C, Jolly J, Shahine B, Pawlicki T, Ma C M 2012 J. Chem. Phys. 137265

    [14]

    Tutunnikov I, Gershnabel E, Gold S, Averbukh I S 2018 J. Phys. Chem. Lett. 91105

    [15]

    Milner A A, Fordyce J A, MacPhail-Bartley I, Wasserman W, Milner V, Tutunnikov I, Averbukh I S 2019 Phys. Rev. Lett. 122223201

    [16]

    DeMille D 2002 Phys. Rev. Lett. 88067901

    [17]

    Albert V V, Covey J P, Preskill J 2020 Phys. Rev. X 10031050

    [18]

    Nalewajski R F 2014 J. Math. Chem. 521292

    [19]

    Pickering J D, Shepperson B, Hübschmann B A, Thorning F, Stapelfeldt H 2018 Phys. Rev. Lett. 120113202

    [20]

    Qi D, Cao F, Xu S, Yao Y, He Y, Yao J, Ding P, Jin C, Deng L, Jia T, et al. 2021 Phys. Rev. Appl. 15024051

    [21]

    Loesch H, Remscheid A 1990 J. Chem. Phys. 934779

    [22]

    Friedrich B, Herschbach D 1991 Z. Phys. D 18153

    [23]

    Lemeshko M, Krems R V, Doyle J M, Kais S 2013 Mol. Phys. 1111648

    [24]

    Koch C P, Lemeshko M, Sugny D 2019 Rev. Mod. Phys. 91035005

    [25]

    Nautiyal V V, Devi S, Tyagi A, Vidhani B, Maan A, Prasad V 2021 Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 256119663

    [26]

    Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 2532763

    [27]

    Dion C, Keller A, Atabek O 2001 Eur. Phys. J. D 14249

    [28]

    Machholm M, Henriksen N E 2001 Phys. Rev. Lett. 87193001

    [29]

    Babilotte P, Hamraoui K, Billard F, Hertz E, Lavorel B, Faucher O, Sugny D 2016 Phys. Rev. A 94043403

    [30]

    Shu C C, Yuan K J, Hu W H, Cong S L 2010 J. Chem. Phys. 132244311

    [31]

    Fleischer S, Zhou Y, Field R W, Nelson K A 2011 Phys. Rev. Lett. 107163603

    [32]

    Shu C C, Hong Q Q, Guo Y, Henriksen N E 2020 Phys. Rev. A 102063124

    [33]

    Tutunnikov I, Xu L, Field R W, Nelson K A, Prior Y, Averbukh I S 2021 Phys. Rev. Res. 3013249

    [34]

    De S, Znakovskaya I, Ray D, Anis F, Johnson N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V, Kling M F 2009 Phys. Rev. Lett. 103153002

    [35]

    Oda K, Hita M, Minemoto S, Sakai H 2010 Phys. Rev. Lett. 104213901

    [36]

    Znakovskaya I, Spanner M, De S, Li H, Ray D, Corkum P, Litvinyuk I V, Cocke C L, Kling M F 2014 Phys. Rev. Lett. 112113005

    [37]

    Ren X, Makhija V, Li H, Kling M F, Kumarappan V 2014 Phys. Rev. A 90013419

    [38]

    Lin K, Tutunnikov I, Qiang J, Ma J, Song Q, Ji Q, Zhang W, Li H, Sun F, Gong X, et al. 2018 Nat. Commun. 95134

    [39]

    Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110023116

    [40]

    Kitano K, Ishii N, Itatani J 2011 Phys. Rev. A 84053408

    [41]

    Shu C C, Henriksen N E 2013 Phys. Rev. A 87013408

    [42]

    Egodapitiya K N, Li S, Jones R R 2014 Phys. Rev. Lett. 112103002

    [43]

    Damari R, Kallush S, Fleischer S 2016 Phys. Rev. Lett. 117103001

    [44]

    Zhang S, Lu C, Jia T, Wang Z, Sun Z 2011 Phys. Rev. A 83043410

    [45]

    Yun H, Kim H T, Kim C M, Nam C H, Lee J 2011 Phys. Rev. A 84065401

    [46]

    Spanner M, Patchkovskii S, Frumker E, Corkum P 2012 Phys. Rev. Lett. 109113001

    [47]

    Qin C C, Jia G R, Zhang X Z, Liu Y F, Long J Y, Zhang B 2013 Chin. Phys. B 23013302

    [48]

    Huang Z Y, Wang D, Lang Z, Li W K, Zhao R R, Leng Y X 2017 Chin. Phys. B 26054209

    [49]

    Mun J H, Sakai H 2018 Phys. Rev. A 98013404

    [50]

    Li H, Li W, Feng Y, Pan H, Zeng H 2013 Phys. Rev. A 88013424

    [51]

    Cheng Q Y, Song Y Z, Meng Q T 2019 Chin. Phys. B 28113301

    [52]

    Damari R, Beer A, Flaxer E, Fleischer S 2023 J. Chem. Phys. 158014201

    [53]

    Kitano K, Ishii N, Kanda N, Matsumoto Y, Kanai T, Kuwata-Gonokami M, Itatani J 2013 Phys. Rev. A 88061405

    [54]

    Kitano K, Ishii N, Kanai T, Itatani J 2014 Phys. Rev. A 90041402

    [55]

    Zhang Y D, Wang S, Zhan W S, Yang J, Jing D 2017 Laser Phys. 27056001

    [56]

    Xu L, Tutunnikov I, Gershnabel E, Prior Y, Averbukh I S 2020 Phys. Rev. Lett. 125013201

    [57]

    Dion C M, Keller A, Atabek O 2005 Phys. Rev. A 72023402

    [58]

    Salomon J, Dion C M, Turinici G 2005 J. Chem. Phys. 123144310

    [59]

    Nakajima K, Abe H, Ohtsuki Y 2012 J. Phys. Chem. A 11611219

    [60]

    Liao S L, Ho T S, Rabitz H, Chu S I 2013 Phys. Rev. A 87013429

    [61]

    Coudert L H 2017 J. Chem. Phys. 146024303

    [62]

    Coudert L 2018 J. Chem. Phys. 148094306

    [63]

    Trippel S, Mullins T, Müller N L M, Kienitz J S, González-Férez R, Küpper J 2015 Phys. Rev. Lett. 114103003

    [64]

    Wang S, Henriksen N E 2020 Phys. Rev. A 102063120

    [65]

    Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104013108

    [66]

    Fan L B, Shu C C, Dong D, He J, Henriksen N E, Nori F 2023 Phys. Rev. Lett. 130043604

    [67]

    Fan L B, Shu C C 2023 J. Phys. A-Math. Theor. 56365302

    [68]

    Zhang J P, Wang S, Henriksen N E 2023 Phys. Rev. A 107033118

    [69]

    Fan L B, Li H J, Chen Q, Zhou H, Liu H, Shu C C 2025 Phys. Rev. A 111033119

    [70]

    Hong Q Q, Dong D, Henriksen N E, Nori F, He J, Shu C C 2025 Phys. Rev. Res. 7 L012049

    [71]

    Werschnik J, Gross E 2007 J. Phys. B: At. Mol. Opt. Phys. 40 R175

    [72]

    Yoshida M, Ohtsuki Y 2014 Phys. Rev. A 90013415

    [73]

    Shu C C, Ho T S, Rabitz H 2016 Phys. Rev. A 93053418

    [74]

    Shu C C, Dong D, Petersen I R, Henriksen N E 2017 Phys. Rev. A 95033809

    [75]

    Guo Y, Dong D, Shu C C 2018 Phys. Chem. Chem. Phys. 209498

    [76]

    Yu H, Ho T S, Rabitz H 2018 Phys. Chem. Chem. Phys. 2013008

    [77]

    Ansel Q, Dionis E, Arrouas F, Peaudecerf B, Guérin S, Guéry-Odelin D, Sugny D 2024 J. Phys. B: At. Mol. Opt. Phys. 57133001

    [78]

    Shtoff A, Rérat M, Gusarov S 2001 Eur. Phys. J. D 15199

  • [1] Lan Wan, Chi Chen-Yang, Guo Ying-Chun, Yang Yu-Jun, Wang Bing-Bing. High order harmonic spectra of CO under external electrostatic field. Acta Physica Sinica, doi: 10.7498/aps.72.20230560
    [2] Liu Jie, Chen Wei, Yang Qiu-Lin, Mu Gen, Gao Hao, Shen Tao, Yang Si-Hua, Zhang Zhen-Hui. Research and development of polarized photoacoustic imaging technology. Acta Physica Sinica, doi: 10.7498/aps.72.20230900
    [3] Dai Zhong-Hua, Zhou Sui-Hua, Zhang Xiao-Bing. Multi-objective optimization of ship magnetic field modeling method. Acta Physica Sinica, doi: 10.7498/aps.70.20210334
    [4] Liu Tian-Yu, Cao Jia-Hui, Liu Yan-Yan, Gao Tian-Fu, Zheng Zhi-Gang. Optimal control of temperature feedback control ratchets. Acta Physica Sinica, doi: 10.7498/aps.70.20210517
    [5] Pan Guo-Xing, Li Tian, Tang Guo-Qiang, Zhang Fa-Pei. Growth and carrier transport properties of highly oriented films of the semiconducting polymers via solution dip-casting. Acta Physica Sinica, doi: 10.7498/aps.66.156801
    [6] Li Bing, Ma Meng-Chen, Lei Ming-Zhu. Hybrid algorithm for composite electromagnetic scattering from the multi-target on and above rough sea surface. Acta Physica Sinica, doi: 10.7498/aps.66.050301
    [7] Zhang Yu-He, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhu Meng-Long, Zhang Hong, Liu Peng, Cao Ning-Tong, Gao Yong-Li. Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100). Acta Physica Sinica, doi: 10.7498/aps.65.157901
    [8] Zhang Hong, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhang Yu-He, Liu Peng, Huang Han, Gao Yong-Li. Thickness-dependent electronic structure of the interface of 2,7-dioctyl[1]benzothieno[3,2-b][1] benzothiophene/Ni(100). Acta Physica Sinica, doi: 10.7498/aps.65.047902
    [9] Huang Chao, Liu Ling-Yun, Fang Jun, Zhang Wen-Hua, Wang Kai, Gao Pin, Xu Fa-Qiang. High magnetic field influence on the molecular orientation and the morphology of iron phthalocyanine thin films. Acta Physica Sinica, doi: 10.7498/aps.65.156101
    [10] Ren Xin-Cheng, Zhu Xiao-Min, Liu Peng. Wide-band composite electromagnetic scattering from the earth soil surface and multiple targets shallowly buried. Acta Physica Sinica, doi: 10.7498/aps.65.204101
    [11] Gao Hong-Yuan, Li Chen-Wan. Membrane-inspired quantum bee colony algorithm for multiobjective spectrum allocation. Acta Physica Sinica, doi: 10.7498/aps.63.128802
    [12] Cao Xiao-Qun. Optimal control for a chaotic system by means of Gauss pseudospectral method. Acta Physica Sinica, doi: 10.7498/aps.62.230505
    [13] Wu Li-Meng, Ni Ming-Kang. Internal layer solution of singularly perturbed optimal control problem. Acta Physica Sinica, doi: 10.7498/aps.61.080203
    [14] Zhu Shao-Ping, Qian Fu-Cai, Liu Ding. Optimal control for uncertainty dynamic chaotic systems. Acta Physica Sinica, doi: 10.7498/aps.59.2250
    [15] Zhu Zhang-Ming, Wan Da-Jing, Yang Yin-Tang. An optimization model of wire size for multi-objective constraint. Acta Physica Sinica, doi: 10.7498/aps.59.4837
    [16] Cao Liang, Zhang Wen-Hua, Chen Tie-Xin, Han Yu-Yan, Xu Fa-Qiang, Zhu Jun-Fa, Yan Wen-Sheng, Xu Yang, Wang Feng. The molecular orientation and electronic structure of 3, 4, 9, 10-perylene tetracarboxylic dianhydride grown on Au(111). Acta Physica Sinica, doi: 10.7498/aps.59.1681
    [17] Zhang Guo-Feng, Cheng Feng-Yu, Jia Suo-Tang, Sun Jian-Hu, Xiao Lian-Tuan, Zhang Fang. Experiment study of orientation and reorientation quantum dynamics of single dye molecules at room temperature. Acta Physica Sinica, doi: 10.7498/aps.58.2364
    [18] Yang Zeng-Qiang, Zhou Xiao-Xin. Controlling pulse duration of two-pulse laser to enhance alignment of N2 molecules. Acta Physica Sinica, doi: 10.7498/aps.57.4099
    [19] Liu Jun, Hou Yan-Bing, Sun Xin, Shi Quan-Min, Li Yan, Jin Hui, Lu Jing. The influence of electric field introduced polymer molecular orientation on the formation cross-section of singlet and triplet excitons in PLED. Acta Physica Sinica, doi: 10.7498/aps.56.2845
    [20] Lu Ming-Zhu, Wan Ming-Xi, Shi Yu, Song Yan-Chun. . Acta Physica Sinica, doi: 10.7498/aps.51.928
Metrics
  • Abstract views:  76
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  08 August 2025
  • /

    返回文章
    返回