Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-objective and multi-constraint optimization of ultracold molecules with limited rotational dynamic orientation

YU Zhenyang HONG Qianqian YI Yougen SHU Chuancun

Citation:

Multi-objective and multi-constraint optimization of ultracold molecules with limited rotational dynamic orientation

YU Zhenyang, HONG Qianqian, YI Yougen, SHU Chuancun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The design of shaping pulse fields for controlling molecular orientation is of great importance in fields of stereochemical reactions, strong-field ionization, and quantum information processing. Traditional quantum optimal control algorithms typically solve the problem of molecular orientation in an infinite-dimensional rotational space, but they often overlook the constraints imposed by experimental limitations. In this work, a multi-objective and multi-constraint quantum optimal control algorithm is proposed to design a pulse field that conforms to the constraints of pulse area and energy. Specifically, the algorithm enforces a zero pulse area condition to eliminate the static field components and maintains constant pulse energy, ensuring compatibility with realistic experimental setups. Under these constraints, the algorithm optimizes the number and phase distribution of a selected number of low-lying rotational states in ultracold molecules to achieve maximum molecular orientation. The effectiveness of the proposed algorithm is demonstrated through numerical studies involving two- and three-state target subspaces, where the creation of a coherent superposition state with optimized population and phase distribution leads to the desired molecular orientation. Furthermore, its scalability is validated by applying it to a more complex 17-state subspace, where a maximum orientation value of 0.99055 is obtained, approaching the global optimal value of 1. Our findings demonstrate that by effectively managing these constraints, the influence of rotational states in the non-target state subspace can be substantially suppressed. The time-frequency analysis of the optimized pulses, combined with the Fourier transform spectrum of the time-dependent degree of orientation, indicates that the maximum molecular orientation is mainly achieved through ladder-climbing excitation of multi-color pulse fields, with the contributions from highly excited states being minimal. This work provides a valuable reference for designing experimentally feasible pulse fields using multi-constraint optimization algorithms, which helps to precisely control a limited number of rotational states to achieve maximum molecular orientation.
  • 图 1  脉冲场激发分子转动态调控分子取向模型示意图. 下面的蓝色能级表示目标态空间含有M个最低转动态; 灰色能级表示非目标态空间包含N个转动态. 本文通过使用多目标多约束量子最优控制理论算法寻找优化脉冲场调控目标空间转动态分布, 从而获得最优分子取向

    Figure 1.  Schematic diagram of the molecular rotation states excited by the pulse field. The blue lines indicate that the target subspace consists of the lowest M rotational states, while the gray lines denote that the non-target subspace contains N rotational states above the target.

    图 2  无非目标态空间无约束少目标态态模型优化结果: 上排表示仅两态模型($ M = 2 $, $ N = 0 $)最大取向度 (a)、脉冲面积 (b)和脉冲能量 (c)随迭代次数变化曲线; 下排表示将优化获得脉冲 (d)用于四态模型($ M = 2 $, $ N = 2 $)所得的含时取向度 (e)及对应的转动态布居演化 (f)曲线

    Figure 2.  The non-constrained optimization results for the model comprising two rotational states within the target subspace. The upper panels depict the maximum degree of orientation (a), pulse area (b), and pulse energy (c) as a function of interactions by excluding the non-target subspace. The lower panels illustrate the optimized time-dependent control fields (d) for the four-state model ($ M = 2 $, $ N = 2 $), alongside the corresponding orientation (e) and the population evolution (f) of the rotational states.

    图 3  含非目标态空间和约束条件两目标态模型($ M = 2 $, $ N = 2 $)优化结果: 上排最大取向度 (a)、脉冲面积 (b)和脉冲能量 (c)随迭代次数变化曲线; 下排表示优化获得脉冲 (d)及含时取向度 (e)及对应的转动态布居演化 (f)曲线

    Figure 3.  The constrained optimization results for the model comprising two rotational states in the target subspace and two rotational state in the non-target subspace. The upper panels depict the maximum degree of orientation (a), pulse area (b), and pulse energy (c) as a function of interactions. The lower panels illustrate the optimized time-dependent control fields (d), alongside the corresponding orientation (e) and the population evolution of the rotational states (f).

    图 4  含非目标态空间和约束条件少目标态模型($ M = 2 $, $ N = 2 $)优化结果: 最大取向度 (a)、非目标态空间总布居 (b), 脉冲面积 (c)和脉冲能量 (d)随迭代次数变化曲线

    Figure 4.  The constrained optimization results for the model comprising three rotational states in the target subspace and two rotational state in the non-target subspace. The maximum orientation (a), the total population in the non-target subspace (b), the pulse area (c), and the pulse energy (d) as a function of iterations.

    图 5  三目标态模型($ M = 2 $, $ N = 2 $)优化转动态布居 (a)和相位 (b)演化曲线

    Figure 5.  The time-dependent populations and phases for the model consisting of three rotational states in the target subspace and two rotational states in the non-target subspace.

    图 6  三目标态模型($ M = 2 $, $ N = 2 $)优化含时脉冲场 (a), 对应的时频谱 (b), 含时取向度 (c)以及对应傅里叶变换谱 (d)

    Figure 6.  The optimal time-dependent pulse field (a), the corresponding time- and frequency-resolved distributions (b), the time-dependent orientation degree (c), and the corresponding Fourier transform spectrum (d) for the model consisting of three rotational states in the target subspace and two rotational states in the non-target subspace.

    图 7  含非目标态空间和约束条件多目标态模型($ M = 17 $, $ N = 2 $)优化结果: 最大取向度 (a)、非目标态空间总布居 (b), 脉冲面积 (c)和脉冲能量 (d)随迭代次数变化曲线

    Figure 7.  The constrained optimization results for the model comprising seventeen rotational states in the target subspace and two rotational states in the non-target subspace. The maximum orientation (a), the total population in the non-target subspace (b), the pulse area (c), and the pulse energy (d) as a function of iterations.

    图 8  优化的17态布居 (a)及对应的相位 (b)分布, (a)中红色三条符号代表理论计算的最优布居分布

    Figure 8.  The optimal population (a) and phase (b) distribution of 17 rotational states in the target subspace. The red triangles in (a) denote the analyzed population distributions.

    图 9  十七目标态模型($ M = 17 $, $ N = 2 $)优化含时脉冲场 (a), 对应的时频谱 (b), 含时取向度 (c)以及对应傅里叶变换谱 (d)

    Figure 9.  The optimal time-dependent pulse field (a), the corresponding time- and frequency-resolved distributions (b), the time-dependent orientation degree (c), and the corresponding Fourier transform spectrum (d) for the model consisting of seventeen rotational states in the target subspace and two rotational states in the non-target subspace.

  • [1]

    Leroux I D, Schleier-Smith M H, Vuletić V 2010 Phys. Rev. Lett. 104 250801Google Scholar

    [2]

    罗嗣佐, 陈洲, 李孝开, 胡湛, 丁大军 2019 光学学报 39 0126007Google Scholar

    Luo S, Chen Z, Li X, Hu Z, Ding D 2019 Acta Opt. Sin. 39 0126007Google Scholar

    [3]

    Lian Z, Luo S, Qi H, Chen Z, Shu C C, Hu Z 2023 Opt. Lett. 48 411Google Scholar

    [4]

    Guo Y, Yang C, Xie X, Li Y, Houk K N, Guo X 2025 Sci. Adv. 11 eads0503Google Scholar

    [5]

    Dong B, Pei Y, Mansour N, Lu X, Yang K, Huang W, Fang N 2019 Nat. Commun. 10 4815Google Scholar

    [6]

    Cai M R, Ye C, Dong H, Li Y 2022 Phys. Rev. Lett. 129 103201Google Scholar

    [7]

    Guo Y, Gong X, Ma S, Shu C C 2022 Phys. Rev. A 105 013102Google Scholar

    [8]

    Liu Y, Meng J Q, Sun Z, Shu C C 2024 J. Phys. Chem. Lett. 15 8393Google Scholar

    [9]

    Ploenes L, Straňák P, Mishra A, Liu X, Pérez-Ríos J, Willitsch S 2024 Nat. Chem. 16 1876Google Scholar

    [10]

    Sawant R, Blackmore J A, Gregory P D, Mur-Petit J, Jaksch D, Aldegunde J, Hutson J M, Tarbutt M R, Cornish S L 2020 New J. Phys. 22 013027Google Scholar

    [11]

    Ye J, Zoller P 2024 Phys. Rev. Lett. 132 190001Google Scholar

    [12]

    Cornish S L, Tarbutt M R, Hazzard K R 2024 Nat. Phys. 20 730Google Scholar

    [13]

    Ding M, Li J S, Deng J, Lee M C, Jolly J, Shahine B, Pawlicki T, Ma C M 2012 J. Chem. Phys. 137 265

    [14]

    Tutunnikov I, Gershnabel E, Gold S, Averbukh I S 2018 J. Phys. Chem. Lett. 9 1105Google Scholar

    [15]

    Milner A A, Fordyce J A, MacPhail-Bartley I, Wasserman W, Milner V, Tutunnikov I, Averbukh I S 2019 Phys. Rev. Lett. 122 223201Google Scholar

    [16]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [17]

    Albert V V, Covey J P, Preskill J 2020 Phys. Rev. X 10 031050

    [18]

    Nalewajski R F 2014 J. Math. Chem. 52 1292Google Scholar

    [19]

    Pickering J D, Shepperson B, Hübschmann B A, Thorning F, Stapelfeldt H 2018 Phys. Rev. Lett. 120 113202Google Scholar

    [20]

    Qi D, Cao F, Xu S, Yao Y, He Y, Yao J, Ding P, Jin C, Deng L, Jia T, et al 2021 Phys. Rev. Appl. 15 024051Google Scholar

    [21]

    Loesch H, Remscheid A 1990 J. Chem. Phys. 93 4779Google Scholar

    [22]

    Friedrich B, Herschbach D 1991 Z. Phys. D 18 153Google Scholar

    [23]

    Lemeshko M, Krems R V, Doyle J M, Kais S 2013 Mol. Phys. 111 1648Google Scholar

    [24]

    Koch C P, Lemeshko M, Sugny D 2019 Rev. Mod. Phys. 91 035005Google Scholar

    [25]

    Nautiyal V V, Devi S, Tyagi A, Vidhani B, Maan A, Prasad V 2021 Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 256 119663Google Scholar

    [26]

    Hong Q Q, Lian Z Z, Shu C C, Henriksen N E 2023 Phys. Chem. Chem. Phys. 25 32763Google Scholar

    [27]

    Dion C, Keller A, Atabek O 2001 Eur. Phys. J. D 14 249Google Scholar

    [28]

    Machholm M, Henriksen N E 2001 Phys. Rev. Lett. 87 193001Google Scholar

    [29]

    Babilotte P, Hamraoui K, Billard F, Hertz E, Lavorel B, Faucher O, Sugny D 2016 Phys. Rev. A 94 043403Google Scholar

    [30]

    Shu C C, Yuan K J, Hu W H, Cong S L 2010 J. Chem. Phys. 132 244311Google Scholar

    [31]

    Fleischer S, Zhou Y, Field R W, Nelson K A 2011 Phys. Rev. Lett. 107 163603Google Scholar

    [32]

    Shu C C, Hong Q Q, Guo Y, Henriksen N E 2020 Phys. Rev. A 102 063124Google Scholar

    [33]

    Tutunnikov I, Xu L, Field R W, Nelson K A, Prior Y, Averbukh I S 2021 Phys. Rev. Res. 3 013249Google Scholar

    [34]

    De S, Znakovskaya I, Ray D, Anis F, Johnson N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V, Kling M F 2009 Phys. Rev. Lett. 103 153002Google Scholar

    [35]

    Oda K, Hita M, Minemoto S, Sakai H 2010 Phys. Rev. Lett. 104 213901Google Scholar

    [36]

    Znakovskaya I, Spanner M, De S, Li H, Ray D, Corkum P, Litvinyuk I V, Cocke C L, Kling M F 2014 Phys. Rev. Lett. 112 113005Google Scholar

    [37]

    Ren X, Makhija V, Li H, Kling M F, Kumarappan V 2014 Phys. Rev. A 90 013419Google Scholar

    [38]

    Lin K, Tutunnikov I, Qiang J, Ma J, Song Q, Ji Q, Zhang W, Li H, Sun F, Gong X, et al 2018 Nat. Commun. 9 5134Google Scholar

    [39]

    Xu S, Lian Z, Hong Q Q, Wang L, Chen H, Huang Y, Shu C C 2024 Phys. Rev. A 110 023116Google Scholar

    [40]

    Kitano K, Ishii N, Itatani J 2011 Phys. Rev. A 84 053408Google Scholar

    [41]

    Shu C C, Henriksen N E 2013 Phys. Rev. A 87 013408Google Scholar

    [42]

    Egodapitiya K N, Li S, Jones R R 2014 Phys. Rev. Lett. 112 103002Google Scholar

    [43]

    Damari R, Kallush S, Fleischer S 2016 Phys. Rev. Lett. 117 103001Google Scholar

    [44]

    Zhang S, Lu C, Jia T, Wang Z, Sun Z 2011 Phys. Rev. A 83 043410Google Scholar

    [45]

    Yun H, Kim H T, Kim C M, Nam C H, Lee J 2011 Phys. Rev. A 84 065401Google Scholar

    [46]

    Spanner M, Patchkovskii S, Frumker E, Corkum P 2012 Phys. Rev. Lett. 109 113001Google Scholar

    [47]

    Qin C C, Jia G R, Zhang X Z, Liu Y F, Long J Y, Zhang B 2013 Chin. Phys. B 23 013302

    [48]

    Huang Z Y, Wang D, Lang Z, Li W K, Zhao R R, Leng Y X 2017 Chin. Phys. B 26 054209Google Scholar

    [49]

    Mun J H, Sakai H 2018 Phys. Rev. A 98 013404Google Scholar

    [50]

    Li H, Li W, Feng Y, Pan H, Zeng H 2013 Phys. Rev. A 88 013424Google Scholar

    [51]

    Cheng Q Y, Song Y Z, Meng Q T 2019 Chin. Phys. B 28 113301Google Scholar

    [52]

    Damari R, Beer A, Flaxer E, Fleischer S 2023 J. Chem. Phys. 158 014201Google Scholar

    [53]

    Kitano K, Ishii N, Kanda N, Matsumoto Y, Kanai T, Kuwata-Gonokami M, Itatani J 2013 Phys. Rev. A 88 061405Google Scholar

    [54]

    Kitano K, Ishii N, Kanai T, Itatani J 2014 Phys. Rev. A 90 041402Google Scholar

    [55]

    Zhang Y D, Wang S, Zhan W S, Yang J, Jing D 2017 Laser Phys. 27 056001Google Scholar

    [56]

    Xu L, Tutunnikov I, Gershnabel E, Prior Y, Averbukh I S 2020 Phys. Rev. Lett. 125 013201Google Scholar

    [57]

    Dion C M, Keller A, Atabek O 2005 Phys. Rev. A 72 023402Google Scholar

    [58]

    Salomon J, Dion C M, Turinici G 2005 J. Chem. Phys. 123 144310Google Scholar

    [59]

    Nakajima K, Abe H, Ohtsuki Y 2012 J. Phys. Chem. A 116 11219Google Scholar

    [60]

    Liao S L, Ho T S, Rabitz H, Chu S I 2013 Phys. Rev. A 87 013429Google Scholar

    [61]

    Coudert L H 2017 J. Chem. Phys. 146 024303Google Scholar

    [62]

    Coudert L 2018 J. Chem. Phys. 148 094306Google Scholar

    [63]

    Trippel S, Mullins T, Müller N L M, Kienitz J S, González-Férez R, Küpper J 2015 Phys. Rev. Lett. 114 103003Google Scholar

    [64]

    Wang S, Henriksen N E 2020 Phys. Rev. A 102 063120Google Scholar

    [65]

    Hong Q Q, Fan L B, Shu C C, Henriksen N E 2021 Phys. Rev. A 104 013108Google Scholar

    [66]

    Fan L B, Shu C C, Dong D, He J, Henriksen N E, Nori F 2023 Phys. Rev. Lett. 130 043604Google Scholar

    [67]

    Fan L B, Shu C C 2023 J. Phys. A-Math. Theor. 56 365302Google Scholar

    [68]

    Zhang J P, Wang S, Henriksen N E 2023 Phys. Rev. A 107 033118Google Scholar

    [69]

    Fan L B, Li H J, Chen Q, Zhou H, Liu H, Shu C C 2025 Phys. Rev. A 111 033119Google Scholar

    [70]

    Hong Q Q, Dong D, Henriksen N E, Nori F, He J, Shu C C 2025 Phys. Rev. Res. 7 L012049Google Scholar

    [71]

    Werschnik J, Gross E 2007 J. Phys. B: At. Mol. Opt. Phys. 40 R175Google Scholar

    [72]

    Yoshida M, Ohtsuki Y 2014 Phys. Rev. A 90 013415Google Scholar

    [73]

    Shu C C, Ho T S, Rabitz H 2016 Phys. Rev. A 93 053418Google Scholar

    [74]

    Shu C C, Dong D, Petersen I R, Henriksen N E 2017 Phys. Rev. A 95 033809Google Scholar

    [75]

    Guo Y, Dong D, Shu C C 2018 Phys. Chem. Chem. Phys. 20 9498Google Scholar

    [76]

    Yu H, Ho T S, Rabitz H 2018 Phys. Chem. Chem. Phys. 20 13008Google Scholar

    [77]

    Ansel Q, Dionis E, Arrouas F, Peaudecerf B, Guérin S, Guéry-Odelin D, Sugny D 2024 J. Phys. B: At. Mol. Opt. Phys. 57 133001Google Scholar

    [78]

    Shtoff A, Rérat M, Gusarov S 2001 Eur. Phys. J. D 15 199Google Scholar

  • [1] Lan Wan, Chi Chen-Yang, Guo Ying-Chun, Yang Yu-Jun, Wang Bing-Bing. High order harmonic spectra of CO under external electrostatic field. Acta Physica Sinica, doi: 10.7498/aps.72.20230560
    [2] Liu Jie, Chen Wei, Yang Qiu-Lin, Mu Gen, Gao Hao, Shen Tao, Yang Si-Hua, Zhang Zhen-Hui. Research and development of polarized photoacoustic imaging technology. Acta Physica Sinica, doi: 10.7498/aps.72.20230900
    [3] Dai Zhong-Hua, Zhou Sui-Hua, Zhang Xiao-Bing. Multi-objective optimization of ship magnetic field modeling method. Acta Physica Sinica, doi: 10.7498/aps.70.20210334
    [4] Liu Tian-Yu, Cao Jia-Hui, Liu Yan-Yan, Gao Tian-Fu, Zheng Zhi-Gang. Optimal control of temperature feedback control ratchets. Acta Physica Sinica, doi: 10.7498/aps.70.20210517
    [5] Pan Guo-Xing, Li Tian, Tang Guo-Qiang, Zhang Fa-Pei. Growth and carrier transport properties of highly oriented films of the semiconducting polymers via solution dip-casting. Acta Physica Sinica, doi: 10.7498/aps.66.156801
    [6] Li Bing, Ma Meng-Chen, Lei Ming-Zhu. Hybrid algorithm for composite electromagnetic scattering from the multi-target on and above rough sea surface. Acta Physica Sinica, doi: 10.7498/aps.66.050301
    [7] Zhang Yu-He, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhu Meng-Long, Zhang Hong, Liu Peng, Cao Ning-Tong, Gao Yong-Li. Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100). Acta Physica Sinica, doi: 10.7498/aps.65.157901
    [8] Zhang Hong, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhang Yu-He, Liu Peng, Huang Han, Gao Yong-Li. Thickness-dependent electronic structure of the interface of 2,7-dioctyl[1]benzothieno[3,2-b][1] benzothiophene/Ni(100). Acta Physica Sinica, doi: 10.7498/aps.65.047902
    [9] Huang Chao, Liu Ling-Yun, Fang Jun, Zhang Wen-Hua, Wang Kai, Gao Pin, Xu Fa-Qiang. High magnetic field influence on the molecular orientation and the morphology of iron phthalocyanine thin films. Acta Physica Sinica, doi: 10.7498/aps.65.156101
    [10] Ren Xin-Cheng, Zhu Xiao-Min, Liu Peng. Wide-band composite electromagnetic scattering from the earth soil surface and multiple targets shallowly buried. Acta Physica Sinica, doi: 10.7498/aps.65.204101
    [11] Gao Hong-Yuan, Li Chen-Wan. Membrane-inspired quantum bee colony algorithm for multiobjective spectrum allocation. Acta Physica Sinica, doi: 10.7498/aps.63.128802
    [12] Cao Xiao-Qun. Optimal control for a chaotic system by means of Gauss pseudospectral method. Acta Physica Sinica, doi: 10.7498/aps.62.230505
    [13] Wu Li-Meng, Ni Ming-Kang. Internal layer solution of singularly perturbed optimal control problem. Acta Physica Sinica, doi: 10.7498/aps.61.080203
    [14] Zhu Shao-Ping, Qian Fu-Cai, Liu Ding. Optimal control for uncertainty dynamic chaotic systems. Acta Physica Sinica, doi: 10.7498/aps.59.2250
    [15] Zhu Zhang-Ming, Wan Da-Jing, Yang Yin-Tang. An optimization model of wire size for multi-objective constraint. Acta Physica Sinica, doi: 10.7498/aps.59.4837
    [16] Cao Liang, Zhang Wen-Hua, Chen Tie-Xin, Han Yu-Yan, Xu Fa-Qiang, Zhu Jun-Fa, Yan Wen-Sheng, Xu Yang, Wang Feng. The molecular orientation and electronic structure of 3, 4, 9, 10-perylene tetracarboxylic dianhydride grown on Au(111). Acta Physica Sinica, doi: 10.7498/aps.59.1681
    [17] Zhang Guo-Feng, Cheng Feng-Yu, Jia Suo-Tang, Sun Jian-Hu, Xiao Lian-Tuan, Zhang Fang. Experiment study of orientation and reorientation quantum dynamics of single dye molecules at room temperature. Acta Physica Sinica, doi: 10.7498/aps.58.2364
    [18] Yang Zeng-Qiang, Zhou Xiao-Xin. Controlling pulse duration of two-pulse laser to enhance alignment of N2 molecules. Acta Physica Sinica, doi: 10.7498/aps.57.4099
    [19] Liu Jun, Hou Yan-Bing, Sun Xin, Shi Quan-Min, Li Yan, Jin Hui, Lu Jing. The influence of electric field introduced polymer molecular orientation on the formation cross-section of singlet and triplet excitons in PLED. Acta Physica Sinica, doi: 10.7498/aps.56.2845
    [20] Lu Ming-Zhu, Wan Ming-Xi, Shi Yu, Song Yan-Chun. . Acta Physica Sinica, doi: 10.7498/aps.51.928
Metrics
  • Abstract views:  343
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2025
  • Accepted Date:  04 July 2025
  • Available Online:  08 August 2025
  • /

    返回文章
    返回