- 
				The Boussinesq equation is a very important equation in fluid mechanics and some other disciplines. A Lax pair of the Boussinesq equation is proposed. With the help of the truncated Painlevé expansion, auto-Bäcklund transformation of the Boussinesq equation and Bäcklund transformation between the Boussinesq equation and the Schwarzian Boussinesq equation are demonstrated. Nonlocal symmetries of the Boussinesq equation are discussed. One-parameter subgroup invariant solutions and one-parameter group transformations are obtained. The consistent Riccati expansion solvability of the Boussinesq equation is proved and some interaction structures between soliton-cnoidal waves are obtained by consistent Riccati expansion.[1] Boussinesq J 1872 J. Math. Pures Appl. 17 55 [2] Ursell F 1953 Proc. Cambridge Philos. Soc. 49 685  Google Scholar Google Scholar[3] Daripa P 1998 J. Comput. Appl. Math. 100 161  Google Scholar Google Scholar[4] Guo B, Gao Z, Lin J 2016 Commun. Theor. Phys. 64 589 [5] Liu W 2009 Z. Naturforschung A 64 709  Google Scholar Google Scholar[6] Benny D J, Luke J C 1964 J. Math. Phys. 43 309  Google Scholar Google Scholar[7] Himonas A A, Mantzavinos D 2015 J. Differ. Equations 258 3107  Google Scholar Google Scholar[8] Li S, Zhang W, Bu X 2017 J. Math. Anal. Appl. 449 96  Google Scholar Google Scholar[9] Weiss J 1983 J. Math. Phys. 24 1405  Google Scholar Google Scholar[10] Guo B X, Lin J 2013 Int. J. Mod. Phys. B 30 1640013 [11] Guo B X, Gao Z J, Lin J 2016 Commun. Theor. Phys. 66 589  Google Scholar Google Scholar[12] Liu Y K, Li B 2016 Chin. J. Phys. 54 718  Google Scholar Google Scholar[13] Gao X N, Lou SY, Tang X Y 2013 J. High Energy Phys. 5 029 [14] Olver P J 1993 Applications of Lie Group to Differential Equations (2nd ed.) (New York: Springer) pp75–238 [15] Liu P, Zeng B Q, Ren B 2015 Commun. Theor. Phys. 63 413  Google Scholar Google Scholar[16] Liu Y K, Li B 2017 Chin. Phys. Lett. 34 010202  Google Scholar Google Scholar[17] Liu P, Zeng B Q, Deng B B, Yang J R 2015 AIP Adv. 5 087162  Google Scholar Google Scholar[18] Liu P, Wang Y X, Ren B, Li J H 2016 Commun. Theor. Phys. 66 595  Google Scholar Google Scholar[19] 焦小玉, 贾曼, 安红利 2019 物理学报 68 140201  Google Scholar Google ScholarJiao X Y, Jia M, An H L 2019 Acta Phys. Sin. 68 140201  Google Scholar Google Scholar[20] Lou S Y 2015 Stud. Appl. Math. 134 372  Google Scholar Google Scholar
- 
				
    
    
图 4 参数关系满足(48)式的碰撞波解(49)式的演化图. 自由参数为 {n = 0.4, a1 = 1, a2 = 1, a3 = 2.2, k1 = 1, k2 = –0.22, ω2 = 1, α = –400, β = 80} Figure 4. The interaction solution (49) with parameter satisfying Formula (48). The free parameters are chosen as {n = 0.4, a1 = 1, a2 = 1, a3 = 2.2, k1 = 1, k2 = –0.22, ω2 = 1, α = –400, β = 80}. 图 5 参数关系满足(48)式的碰撞波解(49)式. 自由参数为{n = 0.6, a1 = 2, a2 = 1, a3 = 4, k1 = 1, k2 = –0.12, ω2 = 0.1, α = –14, β = 6} Figure 5. The interaction solution (49) with parameter satisfying Formula (48). The free parameters are selected as {n = 0.6, a1 = 2, a2 = 1, a3 = 4, k1 = 1, k2 = –0.12, ω2 = 0.1, α = –14, β = 6}. 
- 
				
[1] Boussinesq J 1872 J. Math. Pures Appl. 17 55 [2] Ursell F 1953 Proc. Cambridge Philos. Soc. 49 685  Google Scholar Google Scholar[3] Daripa P 1998 J. Comput. Appl. Math. 100 161  Google Scholar Google Scholar[4] Guo B, Gao Z, Lin J 2016 Commun. Theor. Phys. 64 589 [5] Liu W 2009 Z. Naturforschung A 64 709  Google Scholar Google Scholar[6] Benny D J, Luke J C 1964 J. Math. Phys. 43 309  Google Scholar Google Scholar[7] Himonas A A, Mantzavinos D 2015 J. Differ. Equations 258 3107  Google Scholar Google Scholar[8] Li S, Zhang W, Bu X 2017 J. Math. Anal. Appl. 449 96  Google Scholar Google Scholar[9] Weiss J 1983 J. Math. Phys. 24 1405  Google Scholar Google Scholar[10] Guo B X, Lin J 2013 Int. J. Mod. Phys. B 30 1640013 [11] Guo B X, Gao Z J, Lin J 2016 Commun. Theor. Phys. 66 589  Google Scholar Google Scholar[12] Liu Y K, Li B 2016 Chin. J. Phys. 54 718  Google Scholar Google Scholar[13] Gao X N, Lou SY, Tang X Y 2013 J. High Energy Phys. 5 029 [14] Olver P J 1993 Applications of Lie Group to Differential Equations (2nd ed.) (New York: Springer) pp75–238 [15] Liu P, Zeng B Q, Ren B 2015 Commun. Theor. Phys. 63 413  Google Scholar Google Scholar[16] Liu Y K, Li B 2017 Chin. Phys. Lett. 34 010202  Google Scholar Google Scholar[17] Liu P, Zeng B Q, Deng B B, Yang J R 2015 AIP Adv. 5 087162  Google Scholar Google Scholar[18] Liu P, Wang Y X, Ren B, Li J H 2016 Commun. Theor. Phys. 66 595  Google Scholar Google Scholar[19] 焦小玉, 贾曼, 安红利 2019 物理学报 68 140201  Google Scholar Google ScholarJiao X Y, Jia M, An H L 2019 Acta Phys. Sin. 68 140201  Google Scholar Google Scholar[20] Lou S Y 2015 Stud. Appl. Math. 134 372  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 17375
- PDF Downloads: 283
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							