搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时间分数阶Boussinesq方程的李对称分析

于兴江 刘希强

引用本文:
Citation:

时间分数阶Boussinesq方程的李对称分析

于兴江, 刘希强

Lie symmetry analysis of the time fractional Boussinesq equation

Yu Xing-Jiang, Liu Xi-Qiang
PDF
导出引用
  • 本文利用李群分析方法研究了时间分数阶Boussinesq方程,得到了该方程的李点对称,并把该方程约化为Erdelyi-Kobe分数阶常微分方程. 本文的行文过程也说明了李群分析方法对于约化分数阶非线性发展方程是有效的.
    We have applied the Lie group analysis method to the time fractional Boussinesq equation. This equation can be reduced to an equation which is related to the Erdelyi-Kober fractional derivative by Lie method as a result. It is shown that the approach introduced here is effective and easy to implement.
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:11076015)资助的课题.
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076015).
    [1]

    Ruan H Y, Lou S Y 1992 Acta Phys. Sin. 41 1213 (in Chinese) [阮航宇, 楼森岳 2005 物理学报 41 1213]

    [2]

    Wang L Y 2000 Acta Phys. Sin. 49 181 (in Chinese) [王烈衍 2000 物理学报 49 181]

    [3]

    Clarkson P A, Kruskal M D 1989 Math. Phys. 30 2201

    [4]

    Xin X P, Liu X Q, Zhang L L 2011 Chin. Phys. Lett. 28 1

    [5]

    Li N, Liu X Q 2013 Acta Phys. Sin. 62 0203 (in Chinese) [李宁, 刘希强 2013 物理学报 62 0203]

    [6]

    Yu F J 2011 Chin. Phys. Lett. 28 120201

    [7]

    Ge H X, Liu Y Q, Cheng R J 2012 Chin. Phys. B 21 010206

    [8]

    Khaled A G, Mohamed S M, 2013 Chin. Phys. B 22 010201

    [9]

    Zhang R X, Yang S P 2009 Chin. Phys. B 18 3295

    [10]

    Tao Y J, Huai X L, Li Z G 2006 Chin. Phys. Lett. 23 2487

    [11]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 04507

    [12]

    Chen Y, An H L 2008 Appl. Math. Comput. 200 87

    [13]

    Zhang Q L, Lu L 2011 Chin. Phys. B 20 010510

    [14]

    Lu B 2012 Phys. Lett. A 376 2045

    [15]

    Wang S, Yu Y G 2012 Chin. Phys. Lett. 29 020505

    [16]

    Si G Q, Sun Z Y, Zhang Y B 2011 Chin. Phys. B 20 080505

    [17]

    Buckwar E, Luchko Y 1998 J. Math. Anal. Appl. 227 81

    [18]

    Gazizov R K, Kasatkin A A, Yu S 2007 Vestnik, USATU 9 125 (in Russian)

    [19]

    Djordjevic V D, Atanackovic T M 2008 Comput. Appl. 212 701

    [20]

    Gazizov R K, Kasatkin A A, Lukashchuk S Y 2009 Phys. Scr. T. 136 014

    [21]

    Sahadevan R, Bakkyaraj T 2012 J. Math. Anal. Appl. 393 341

    [22]

    Wang G W, Liu X Q, Zhang Y Y 2013 Commun. Nonl. Sci. Num. Sim 18 2321

    [23]

    Liu Y Q 2012 Journal of Fractional Calculus and Applications 3 1

    [24]

    Momani S, Odibat Z 2007 Phys. Lett. A 365 345

    [25]

    Jumarie G 2006 Comput. Math. Appl. 51 1367

    [26]

    Miller K S, Ross B 1993 Wiley, New York

    [27]

    Podlubny I 1999 Fractional Differential Equations (Academic Press, San Diego CA)

    [28]

    Kiryakova V S 1994 Generalized fractional calculus and applications (Pitman Res. Notesin Math.) 301

  • [1]

    Ruan H Y, Lou S Y 1992 Acta Phys. Sin. 41 1213 (in Chinese) [阮航宇, 楼森岳 2005 物理学报 41 1213]

    [2]

    Wang L Y 2000 Acta Phys. Sin. 49 181 (in Chinese) [王烈衍 2000 物理学报 49 181]

    [3]

    Clarkson P A, Kruskal M D 1989 Math. Phys. 30 2201

    [4]

    Xin X P, Liu X Q, Zhang L L 2011 Chin. Phys. Lett. 28 1

    [5]

    Li N, Liu X Q 2013 Acta Phys. Sin. 62 0203 (in Chinese) [李宁, 刘希强 2013 物理学报 62 0203]

    [6]

    Yu F J 2011 Chin. Phys. Lett. 28 120201

    [7]

    Ge H X, Liu Y Q, Cheng R J 2012 Chin. Phys. B 21 010206

    [8]

    Khaled A G, Mohamed S M, 2013 Chin. Phys. B 22 010201

    [9]

    Zhang R X, Yang S P 2009 Chin. Phys. B 18 3295

    [10]

    Tao Y J, Huai X L, Li Z G 2006 Chin. Phys. Lett. 23 2487

    [11]

    Wang D F, Zhang J Y, Wang X Y 2013 Chin. Phys. B 22 04507

    [12]

    Chen Y, An H L 2008 Appl. Math. Comput. 200 87

    [13]

    Zhang Q L, Lu L 2011 Chin. Phys. B 20 010510

    [14]

    Lu B 2012 Phys. Lett. A 376 2045

    [15]

    Wang S, Yu Y G 2012 Chin. Phys. Lett. 29 020505

    [16]

    Si G Q, Sun Z Y, Zhang Y B 2011 Chin. Phys. B 20 080505

    [17]

    Buckwar E, Luchko Y 1998 J. Math. Anal. Appl. 227 81

    [18]

    Gazizov R K, Kasatkin A A, Yu S 2007 Vestnik, USATU 9 125 (in Russian)

    [19]

    Djordjevic V D, Atanackovic T M 2008 Comput. Appl. 212 701

    [20]

    Gazizov R K, Kasatkin A A, Lukashchuk S Y 2009 Phys. Scr. T. 136 014

    [21]

    Sahadevan R, Bakkyaraj T 2012 J. Math. Anal. Appl. 393 341

    [22]

    Wang G W, Liu X Q, Zhang Y Y 2013 Commun. Nonl. Sci. Num. Sim 18 2321

    [23]

    Liu Y Q 2012 Journal of Fractional Calculus and Applications 3 1

    [24]

    Momani S, Odibat Z 2007 Phys. Lett. A 365 345

    [25]

    Jumarie G 2006 Comput. Math. Appl. 51 1367

    [26]

    Miller K S, Ross B 1993 Wiley, New York

    [27]

    Podlubny I 1999 Fractional Differential Equations (Academic Press, San Diego CA)

    [28]

    Kiryakova V S 1994 Generalized fractional calculus and applications (Pitman Res. Notesin Math.) 301

计量
  • 文章访问数:  2022
  • PDF下载量:  820
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-27
  • 修回日期:  2013-09-01
  • 刊出日期:  2013-12-05

时间分数阶Boussinesq方程的李对称分析

  • 1. 聊城大学数学科学学院, 聊城 252059
    基金项目: 

    国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:11076015)资助的课题.

摘要: 本文利用李群分析方法研究了时间分数阶Boussinesq方程,得到了该方程的李点对称,并把该方程约化为Erdelyi-Kobe分数阶常微分方程. 本文的行文过程也说明了李群分析方法对于约化分数阶非线性发展方程是有效的.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回