Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and properties for X-ray scintillation screen based on ZnO:In nanorod arrays

Li Qian-Li Hu Ya-Hua Ma Yi-Fan Sun Zhi-Xiang Wang Min Liu Xiao-Lin Zhao Jing-Tai Zhang Zhi-Jun

Citation:

Preparation and properties for X-ray scintillation screen based on ZnO:In nanorod arrays

Li Qian-Li, Hu Ya-Hua, Ma Yi-Fan, Sun Zhi-Xiang, Wang Min, Liu Xiao-Lin, Zhao Jing-Tai, Zhang Zhi-Jun
PDF
HTML
Get Citation
  • X-ray scintillation screens as the core component of X-ray imaging detectors have widespread applications in the medical imaging, security inspection, high energy physics, radiochemistry, and so on. For a long time, the development of X-ray scintillation screen mainly focuses on improving the light yield in order to enhance its detection efficiency. However, a novel tendency has recently emerged for ultrafast time performance of the X-ray imaging detector. The indium doping zinc oxide (ZnO:In) with high radiation hardness, higher light yield(>10000 photons/MeV) and subnanosecond decay time is a promising scintillation material for ultrafast detections. In order to satisfy the requirements of X-ray scintillation screens with ultrafast and high-spatial-resolution in the existing and upcoming high energy physics experiments, the ZnO:In nanorod arrays have been prepared on a 100-nm-thick ZnO-seeded substrate by hydrothermal reaction method and then treated by hydrogen plasma in present work. The results of SEM demonstrate the average diameter and length of the ZnO:In nanorods are about 0.5 and 12 μm, respectively. The XRD shows the ZnO:In nanorods are highly aligned perpendicular to the substrate along c-axis direction. The X-ray excited luminescence spectra show that two luminescence bands are observed, i.e. an ultraviolet emission peak located at about 395 nm and a visible emission band at 450–750 nm. It is particularly important to point out that hydrogen plasma treatment can enhance the ultraviolet emission of ZnO:In nanorod arrays and suppress its visible emission. The reason is attributed to the formation of shallow donors through hydrogen entering the ZnO and the combination of VO and Oi. In addition, the fluorescence decay times of the ultraviolet and visible emissions for the ZnO:In nanorod arrays are subnanosecond and nanosecond, respectively, satisfying the demand of the fast X-ray imaging. The spatial resolution of ZnO:In nanorod arrays has been characterized in X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility. Under excitation of the X-ray beam with the energy of 20 keV, a system spatial resolution of 1.5 μm could be achieved by using an 12 μm thickness ZnO:In nanorod arrays as the scintillation screen, which is exceeded the highest level had ever been reported on ZnO:In nanorod arrays scintillation screen. In conclusion, this present work shows that it is a feasible solution for X-ray detection and imaging with high temporal and spatial resolution by using ZnO:In nanorod arrays as the X-ray scintillation screen.
      Corresponding author: Zhang Zhi-Jun, zhangzhijun@shu.edu.cn
    [1]

    Yanagida T 2018 Proc. Jpn. Acad., Ser. B 94 75Google Scholar

    [2]

    Dujardin C, Auffray E, Bourret-Courchesne E, Dorenbos P, Lecoq P, Nikl M, Vasil'ev A N, Yoshikawa A, Zhu R Y 2018 IEEE Trans. Nucl. Sci. 65 1977Google Scholar

    [3]

    Nikl M 2006 Meas. Sci. Technol. 17 R37Google Scholar

    [4]

    Barnes, C W, Fernández, J C, Hartsfield, T M, Sandberg, R L, Sheffield, R L, Tapia, J P, Wang, Z 2018 AIP Conf. Proc. 1979 160003Google Scholar

    [5]

    Turk G, Reverdin C, Gontier D, Darbon S, Dujardin C, Ledoux G, Hamel M, Simic V, Normand S 2010 Rev. Sci. Instrum. 81 10E509Google Scholar

    [6]

    Atanov N, Baranov V, Budagov J, Cervelli F, Colao F, Cordelli M, Corradi G, Davydov Y I, Falco S D, Diociaiuti E, Donati S, Donghia R, Echenard B, Giovannella S, Glagolev V, Grancagnolo F, Happacher F, Hitlin D G, Martini M, Miscetti S, Miyashita T, Morescalchi L, Murat P, Pedreschi E, Pezzullo G, Porter F, Raffaelli F, Ricci M, Saputi A, Sarra I, Spinella F, Tassielli G, Tereshchenko V, Usubov Z, Zhu R Y 2018 J. Instrum. 13 C02037Google Scholar

    [7]

    Zhu R Y 2019 J. Phys. Conf. Ser. 1162 012022Google Scholar

    [8]

    Hu C, Zhang L, Zhu RY, Chen A, Wang Z, Ying L, Yu Z 2018 IEEE Trans. Nucl. Sci. 65 2097Google Scholar

    [9]

    Simpson P J, Tjossem R, Hunt A W, Lynn K G, Munné V 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 505 82Google Scholar

    [10]

    Chen L, Ruan J, Xu M, He S, Hu J, Zhang Z, Liu J, Ouyang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 933 71Google Scholar

    [11]

    Grigorjeva L, Grube J, Bite I, Zolotarjovs A, Smits K, Millers D, Rodnyi P, Chernenko K 2019 Radiat. Meas. 123 69Google Scholar

    [12]

    邱志澈, 顾牡, 刘小林, 刘波, 黄世明, 倪晨 2016 光谱学与光谱分析 36 336Google Scholar

    Qiu Z C, Gu M, Liu X L, Liu B, Huang S M, Ni C 2016 Spectrosc. Spect. Anal. 36 336Google Scholar

    [13]

    Liu S, Gu M, Chen H, Sun Z, Liu X, Liu B, Huang S, Zhang J 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 903 18Google Scholar

    [14]

    Li Q, Liu X, Gu M, Li F, Zhang J, Wu Q, Huang S, Liu S 2018 Appl. Surf. Sci. 433 815Google Scholar

    [15]

    Kobayashi M, Komori J, Shimidzu K, Izaki M, Uesugi K, Takeuchi A, Suzuki Y 2015 Appl. Phys. Lett. 106 081909Google Scholar

    [16]

    Izaki M, Kobayashi M, Shinagawa T, Koyama T, Uesugi K, Takeuchi A 2017 Phys. Status Solidi A 214 1700285Google Scholar

    [17]

    Li Q, Hao S, An R, Wang M, Sun Z, Wu Q, Gu M, Zhao J, Liu X, Zhang Z 2019 Appl. Surf. Sci. 493 1299Google Scholar

    [18]

    倪晨, 顾牡, 王迪, 曹顿华, 刘小林, 黄世明 2009 光谱学与光谱分析 29 2291Google Scholar

    Ni C, Gu M, Wang D, Cao D H, Liu X L, Huang S M 2009 Spectrosc. Spect. Anal. 29 2291Google Scholar

    [19]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar

    [20]

    Li Q, Liu X, Gu M, Huang S, Ni C, Liu B, Hu Y, Sun S, Zhang Z 2016 IEEE Trans. Nucl. Sci. 63 471Google Scholar

    [21]

    Li Q, Liu X, Gu M, Huang S, Zhang J, Ni C, Liu B, Hu Y, Wu Q, Zhao S 2016 Superlattices Microstruct. 98 351Google Scholar

    [22]

    Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 045504Google Scholar

    [23]

    Lavrov E V, Herklotz F, Weber J 2009 Phys. Rev. B 79 165210Google Scholar

    [24]

    Kano M, Wakamiya A, Yamanoi K, Sakai K, Takeda K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Fukuda T 2012 IEEE Trans. Nucl. Sci. 59 2290Google Scholar

    [25]

    Yamanoi K, Sakai K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Kano M, Wakamiya A, Fukuda T, Nagasono M, Togashi T, Matsubara S, Tono K, Higashiya A, Yabashi M, Kimura H, Ohashi H, Ishikawa T 2012 IEEE Trans. Nucl. Sci. 59 2298Google Scholar

    [26]

    郭智敏, 倪培君 2010 兵器材料科学与工程 33 113Google Scholar

    Guo Z M, Ni P J, 2010 Ordnance Mater. Sci. Eng. 33 113Google Scholar

    [27]

    Chen H, Gu M, Sun Z, Liu X, Liu B, Zhang J, Huang S, Ni C 2019 Opt. Express 27 14871Google Scholar

    [28]

    Sowa K M, Last A, Korecki P 2017 Sci. Rep. 7 44944Google Scholar

    [29]

    Samei E, Flynn M J, Reimann D A 1998 Med. Phys. 25 102Google Scholar

    [30]

    Michail C, Valais I, Martini N, Koukou V, Kalyvas N, Bakas A, Kandarakis I, Fountos G 2016 Radiat. Meas. 94 8Google Scholar

  • 图 1  ZnO:In纳米棒阵列的制备流程示意图

    Figure 1.  The schematic illustration of the fabrication process of ZnO:In nanorod arrays.

    图 2  ZnO:In纳米棒阵列的SEM (a)截面; (b)顶端; (c)表面; (d)斜视图

    Figure 2.  SEM images of ZnO:In nanorod arrays: (a) Cross-sectional; (b) top; (c) surface; (d) oblique views.

    图 3  氢气氛等离子处理前后ZnO:In纳米棒阵列的XRD谱图

    Figure 3.  XRD patterns of the ZnO:In nanorod arrays before and after hydrogen plasma treatment.

    图 4  氢气氛等离子处理前后ZnO:In纳米棒阵列的XEL光谱

    Figure 4.  XEL spectra of the ZnO:In nanorod arrays before and after hydrogen plasma treatment.

    图 5  (a) ZnO:In纳米棒阵列的紫外发光衰减时间曲线(λex = 325 nm, λem = 395 nm); (b)可见发光衰减时间曲线(λex = 325 nm, λem = 530 nm)

    Figure 5.  The fluorescence decay curves of (a) ultravioletemission (λex = 325 nm, λem = 395 nm) and (b) visible emission (λex = 325 nm, λem = 530 nm) for the ZnO:In nanorod arrays.

    图 6  上海同步辐射光源BL13 W1线站的X射线成像测量设备示意图

    Figure 6.  Schematic diagram of the synchrotron radiation X-ray imaging measurement setup at BL13 W1, SSRF.

    图 7  (a) JIMA RT RC-02型微米分辨率板实物图, 内部结构图示意图和微米分辨图案; 基于ZnO:In纳米棒阵列做闪烁转换屏的(b) 3 μm和(c) 1.5 μm的X射线成像图

    Figure 7.  (a) Physical, Schematic diagram of internal structure and Micron-resolved pattern of JIMA RT-02 micro-resolution plates; the X-ray images of (b) 3 μm and (c) 1.5 μm basedonZnO:In nanorod arrays as the scintillation screen.

    图 8  ZnO:In纳米棒阵列的X射线成像系统的(a) MTF曲线和(b) DQE曲线

    Figure 8.  (a) MTF and (b) DQE curves of the X-ray imaging system with ZnO:In nanorod arrays.

  • [1]

    Yanagida T 2018 Proc. Jpn. Acad., Ser. B 94 75Google Scholar

    [2]

    Dujardin C, Auffray E, Bourret-Courchesne E, Dorenbos P, Lecoq P, Nikl M, Vasil'ev A N, Yoshikawa A, Zhu R Y 2018 IEEE Trans. Nucl. Sci. 65 1977Google Scholar

    [3]

    Nikl M 2006 Meas. Sci. Technol. 17 R37Google Scholar

    [4]

    Barnes, C W, Fernández, J C, Hartsfield, T M, Sandberg, R L, Sheffield, R L, Tapia, J P, Wang, Z 2018 AIP Conf. Proc. 1979 160003Google Scholar

    [5]

    Turk G, Reverdin C, Gontier D, Darbon S, Dujardin C, Ledoux G, Hamel M, Simic V, Normand S 2010 Rev. Sci. Instrum. 81 10E509Google Scholar

    [6]

    Atanov N, Baranov V, Budagov J, Cervelli F, Colao F, Cordelli M, Corradi G, Davydov Y I, Falco S D, Diociaiuti E, Donati S, Donghia R, Echenard B, Giovannella S, Glagolev V, Grancagnolo F, Happacher F, Hitlin D G, Martini M, Miscetti S, Miyashita T, Morescalchi L, Murat P, Pedreschi E, Pezzullo G, Porter F, Raffaelli F, Ricci M, Saputi A, Sarra I, Spinella F, Tassielli G, Tereshchenko V, Usubov Z, Zhu R Y 2018 J. Instrum. 13 C02037Google Scholar

    [7]

    Zhu R Y 2019 J. Phys. Conf. Ser. 1162 012022Google Scholar

    [8]

    Hu C, Zhang L, Zhu RY, Chen A, Wang Z, Ying L, Yu Z 2018 IEEE Trans. Nucl. Sci. 65 2097Google Scholar

    [9]

    Simpson P J, Tjossem R, Hunt A W, Lynn K G, Munné V 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 505 82Google Scholar

    [10]

    Chen L, Ruan J, Xu M, He S, Hu J, Zhang Z, Liu J, Ouyang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 933 71Google Scholar

    [11]

    Grigorjeva L, Grube J, Bite I, Zolotarjovs A, Smits K, Millers D, Rodnyi P, Chernenko K 2019 Radiat. Meas. 123 69Google Scholar

    [12]

    邱志澈, 顾牡, 刘小林, 刘波, 黄世明, 倪晨 2016 光谱学与光谱分析 36 336Google Scholar

    Qiu Z C, Gu M, Liu X L, Liu B, Huang S M, Ni C 2016 Spectrosc. Spect. Anal. 36 336Google Scholar

    [13]

    Liu S, Gu M, Chen H, Sun Z, Liu X, Liu B, Huang S, Zhang J 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 903 18Google Scholar

    [14]

    Li Q, Liu X, Gu M, Li F, Zhang J, Wu Q, Huang S, Liu S 2018 Appl. Surf. Sci. 433 815Google Scholar

    [15]

    Kobayashi M, Komori J, Shimidzu K, Izaki M, Uesugi K, Takeuchi A, Suzuki Y 2015 Appl. Phys. Lett. 106 081909Google Scholar

    [16]

    Izaki M, Kobayashi M, Shinagawa T, Koyama T, Uesugi K, Takeuchi A 2017 Phys. Status Solidi A 214 1700285Google Scholar

    [17]

    Li Q, Hao S, An R, Wang M, Sun Z, Wu Q, Gu M, Zhao J, Liu X, Zhang Z 2019 Appl. Surf. Sci. 493 1299Google Scholar

    [18]

    倪晨, 顾牡, 王迪, 曹顿华, 刘小林, 黄世明 2009 光谱学与光谱分析 29 2291Google Scholar

    Ni C, Gu M, Wang D, Cao D H, Liu X L, Huang S M 2009 Spectrosc. Spect. Anal. 29 2291Google Scholar

    [19]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar

    [20]

    Li Q, Liu X, Gu M, Huang S, Ni C, Liu B, Hu Y, Sun S, Zhang Z 2016 IEEE Trans. Nucl. Sci. 63 471Google Scholar

    [21]

    Li Q, Liu X, Gu M, Huang S, Zhang J, Ni C, Liu B, Hu Y, Wu Q, Zhao S 2016 Superlattices Microstruct. 98 351Google Scholar

    [22]

    Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 045504Google Scholar

    [23]

    Lavrov E V, Herklotz F, Weber J 2009 Phys. Rev. B 79 165210Google Scholar

    [24]

    Kano M, Wakamiya A, Yamanoi K, Sakai K, Takeda K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Fukuda T 2012 IEEE Trans. Nucl. Sci. 59 2290Google Scholar

    [25]

    Yamanoi K, Sakai K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Kano M, Wakamiya A, Fukuda T, Nagasono M, Togashi T, Matsubara S, Tono K, Higashiya A, Yabashi M, Kimura H, Ohashi H, Ishikawa T 2012 IEEE Trans. Nucl. Sci. 59 2298Google Scholar

    [26]

    郭智敏, 倪培君 2010 兵器材料科学与工程 33 113Google Scholar

    Guo Z M, Ni P J, 2010 Ordnance Mater. Sci. Eng. 33 113Google Scholar

    [27]

    Chen H, Gu M, Sun Z, Liu X, Liu B, Zhang J, Huang S, Ni C 2019 Opt. Express 27 14871Google Scholar

    [28]

    Sowa K M, Last A, Korecki P 2017 Sci. Rep. 7 44944Google Scholar

    [29]

    Samei E, Flynn M J, Reimann D A 1998 Med. Phys. 25 102Google Scholar

    [30]

    Michail C, Valais I, Martini N, Koukou V, Kalyvas N, Bakas A, Kandarakis I, Fountos G 2016 Radiat. Meas. 94 8Google Scholar

  • [1] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [2] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [3] Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong. Far-field super-resolution imaging based on wideband stereo-metalens. Acta Physica Sinica, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [4] Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2. Acta Physica Sinica, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [5] Fan Wei, Gu Yu-Qiu, Zhu Bin, Shui Min, Shan Lian-Qiang, Du Sai, Xin Jian-Ting, Zhao Zong-Qing, Zhou Wei-Min, Cao Lei-Feng, Zhang Xue-Ru, Wang Yu-Xiao. Design and theoretical research of an ultrafast time-resolved velocity interferometer. Acta Physica Sinica, 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [6] Chen Huo-Yao, Liu Zheng-Kun, Wang Qing-Bo, Yi Tao, Yang Guo-Hong, Hong Yi-Lin, Fu Shao-Jun. Effect of curve groove on the spectral resolution for soft X-ray holographic flat-field gratings. Acta Physica Sinica, 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [7] Zhou Shu-Bo, Yuan Yan, Su Li-Juan. A regularized super resolution algorithm based on the double threshold Huber norm estimation. Acta Physica Sinica, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [8] Zhou Hong-Cheng, Wang Bing-Zhong, Ding Shuai, Ou Hai-Yan. Super-resolution focusing of time reversal electromagnetic waves in metal wire array medium. Acta Physica Sinica, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [9] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [10] Lu Jing, Li Hao, He Yi, Shi Guo-Hua, Zhang Yu-Dong. Superresolution in adaptive optics confocal scanning laser ophthalmoscope. Acta Physica Sinica, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [11] Guo Wen-Gang, Hu Hao-Feng, Wang Pan, Wang Xiao-Lei, Zhai Hong-Chen. Time-resolved optical diagnosis of intense femtosecond laser ablation of silica glass. Acta Physica Sinica, 2011, 60(1): 017901. doi: 10.7498/aps.60.017901
    [12] Zhao Gui-Min, Lu Ming-Zhu, Wan Ming-Xi, Fang Li. Study of vibro-acoustography with high spatial resolution based on sector array transducers. Acta Physica Sinica, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [13] Gong Mao-Gang, Xu Xiao-Liang, Cao Zi-Li, Liu Yuan-Yue, Zhu Hai-Ming. Two-step growth of superhydrophobic ZnO nanorod array films. Acta Physica Sinica, 2009, 58(3): 1885-1889. doi: 10.7498/aps.58.1885
    [14] Liang Wen-Xi, Zhu Peng-Fei, Wang Xuan, Nie Shou-Hua, Zhang Zhong-Chao, Cao Jian-Ming, Sheng Zheng-Ming, Zhang Jie. Development and optimization on spatiotemporal resolution of ultrafast electron diffraction. Acta Physica Sinica, 2009, 58(8): 5539-5545. doi: 10.7498/aps.58.5539
    [15] Ge Guang-Ding, Wang Bing-Zhong, Huang Hai-Yan, Zheng Gang. Super-resolution characteristics of time-reversed electromagnetic wave. Acta Physica Sinica, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [16] Wang Ye, Xu Xiao-Liang, Xie Wei-Yu, Wang Zhuang-Bing, Lü Liu, Zhao Ya-Li. Two-step growth of highly oriented ZnO nanorod arrays. Acta Physica Sinica, 2008, 57(4): 2582-2586. doi: 10.7498/aps.57.2582
    [17] Xie Hong-Lan, Gao Hong-Yi, Chen Jian-Wen, Wang Jun-Yue, Zhu Pei-Ping, Xiong Shi-Sheng, Xian Ding-Chang, Xu Zhi-Zhan. Numerical simulation study for atomic-resolution x-ray fluorescence holography. Acta Physica Sinica, 2003, 52(9): 2223-2228. doi: 10.7498/aps.52.2223
    [18] ZHANG HAI-TAO, GONG MA-LI, ZHAO DA-ZUN, YAN PING, CUI RUI-ZHEN, JIA WEI-PU. SUPERRESOLUTION BY MICRO-ZOOMING TECHNIQUE. Acta Physica Sinica, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
    [19] ZHU PEI-PING, XIAO TI-QIAO, CHEN JIAN-WEN, XU ZHI-ZHAN. ANALYSIS TO EFFECT OF MAIN FACTORS ON RESOLUTION INVOLVED IN X-RAY HOLO-GRAM RECORDING. Acta Physica Sinica, 1994, 43(6): 879-888. doi: 10.7498/aps.43.879
    [20] LU KUN-QUAN, CHANG LONG-CUN, ZHAO YA-QIN. THE RESOLUTION OF CRYSTAL MONOCHROMATOR FOR CONTINUOUS X-RAY SPECTRUM. Acta Physica Sinica, 1983, 32(12): 1505-1514. doi: 10.7498/aps.32.1505
Metrics
  • Abstract views:  10023
  • PDF Downloads:  272
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2020
  • Accepted Date:  09 March 2020
  • Published Online:  20 May 2020

/

返回文章
返回