Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of deep level defects on space charge distribution in CdZnTe crystals

Guo Rong- Rong Lin Jin-Hai Liu Li-Li Li Shi-Wei Wang Chen Lin Hai-Jun

Citation:

Effect of deep level defects on space charge distribution in CdZnTe crystals

Guo Rong- Rong, Lin Jin-Hai, Liu Li-Li, Li Shi-Wei, Wang Chen, Lin Hai-Jun
PDF
HTML
Get Citation
  • CdZnTe recently emerged as a leading semiconductor crystal for fabricating room-temperature x- and gamma-ray imaging detectors, due to its excellent energy resolution and sensitivity. However, its wide deployment is hampered by the low availability of high-quality CdZnTe crystals. As-grown CdZnTe crystals generally encounter the problems arising from the impurities and defects, especially deep level defects. The presence of impurities and defects leads to severe charge trapping, which significantly affects detector performance. Especially for high counting rate imaging detector used in medical imaging and tomography, the accumulation of space charge at deep levels significantly deforms the electric field distribution and subsequently reduces the charge collection efficiency. Therefore, a considerable interest is focused on the investigation of the space charge accumulation effect in CdZnTe crystal, which is the key factor to improve the performance of high counting rate imaging detector. Thus, the goal of this work is to investigate the effects of deep level defects on space charge distribution and internal electric field in CdZnTe detector. In order to reveal the major problem therein, Silvaco TCAD technique is used to simulate the space charge and electric field distribution profile in CdZnTe detector with considering the typical deep level defects $ \rm Te_{Cd}^{++} $in CdZnTe crystals with activation energy of Ev + 0.86 eV and concentration of 1 × 1012 cm–3 at room temperature. The simulation results demonstrate that the Au/ CdZnTe /Au energy band tilts intensively with the increase of applied bias, which makes the deep level ionization fraction increase. The space charge concentration also increases in the crystal. Meanwhile, the dead layer of electric field distribution decreases, which is of benefit to the carrier collection of CdZnTe detector. In addition, under the premiseof the high resistivity of CdZnTe crystal, the reduction of deep level defect concentration located at Ev + 0.86 eV can narrow the internal dead layer moderately. The deep level defect located at Ev + 0.8 eV can also reduce the space charge concentration near the cathode, which flattens the electric field distribution with narrower dead layer, thus significantly improving the carrier collection efficiency of CdZnTe detector. These simulation results will provide meaningful theoretical guidance for further optimizing the CdZnTe crystal growth, device design and fabrication.
      Corresponding author: Guo Rong- Rong, guorr2020@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 51702271, 61904155), the Natural Science Foundation of Fujian Province, China (Grant No. 2020J05239), and the Middle-Aged and Young Teachers Education , Scientific Research Program of the Education Department of Fujian Province, China (Grant No. JAT170407)
    [1]

    Czyz S A, Farsoni A T, Gadey H R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 945 162614Google Scholar

    [2]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 040902Google Scholar

    [3]

    Guo Q, Beilicke M, Garson A, Kislat F, Fleming D, Krawczynski H 2012 Astropart. Phys. 41 63Google Scholar

    [4]

    Prokesch M, Soldner S A, Sundaram A G, Reed M D, Li H, Eger J F, Reiber J L, Shanor C L, Wray C L, Emerick A J, Peters A F, Jones C L 2016 IEEE Trans. Nucl. Sci. 63 1854Google Scholar

    [5]

    Chai L, Chen L, Yang C P, Zhou D D, Yang M M, Qu W W, Zhang G L, Hei D Q, Xu S P, Chen X J 2019 Nucl. Sci. Tech. 30 91Google Scholar

    [6]

    Jiang W, Chalich Y, Deen M J 2019 Sensors 19 5019Google Scholar

    [7]

    Iniewski K 2014 J. Instrum. 9 C11001Google Scholar

    [8]

    Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [9]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mesropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [10]

    Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945Google Scholar

    [11]

    Bale D S, Szeles C 2008 Phys. Rev. B 77 035205Google Scholar

    [12]

    Soldner S A, Bale D S, Szeles C 2007 IEEE Trans. Nucl. Sci. 54 1723Google Scholar

    [13]

    Cola A, Farella I 2013 Sensors 13 9414Google Scholar

    [14]

    Li Y, Zha G, Guo Y, Xi S, Xu L, Jie W 2020 Sensors 20 383Google Scholar

    [15]

    Bale D S, Soldner S A, Szeles C 2008 Appl. Phys. Lett. 92 082101.1Google Scholar

    [16]

    Camarda G S, Bolotnikov A E, Cui Y, Hossain A, Awadalla S A, Mackenzie J, Chen H, James R B 2007 IEEE Nuclear Science Symposium Conference Record Honolulu, Hawaii, USA, October 26 – November 3, 2007 p1798

    [17]

    Musiienko A, Grill R, Pekárek J, Belas E, Praus P, Pipek J, Dědič V, Elhadidy H 2017 Appl. Phys. Lett. 111 082103.1Google Scholar

    [18]

    Mahmood S A 2019 J. Appl. Phys. 125 214505Google Scholar

    [19]

    Thomas B, Veale M C, Wilson M D, Seller P, Schneider A, Iniewski K 2017 J. Instrum. 12 C12045Google Scholar

    [20]

    Maneuski D, Gostilo V, Owens A 2019 J. Phys. D: Appl. Phys. 53 015114Google Scholar

    [21]

    Das A, Duttagupta S P 2015 Radiat.Prot. Dosim. 167 443Google Scholar

    [22]

    Johannesson D, Nawaz M, Nee H P 2019 Mater. Sci. Forum. 963 670Google Scholar

    [23]

    唐龙谷 2014 半导体工艺和器件仿真软件Silvaco TCAD实用教程 (北京: 清华大学出版社) 第99页

    Tang L G 2014 Semiconductor Process and Device Simulation Software Silvaco TCAD Practical Tutorial (Beijing: Tsinghua University Press) p99 (in Chinese)

    [24]

    Prokesch M, Szeles C 2007 Phys. Rev. B 75 245204.1Google Scholar

    [25]

    Gul R, Roy U N, James R B 2017 J. Appl. Phys. 121 115701.1Google Scholar

    [26]

    Simmons J G, Taylor G W 1971 Phys. Rev. B 4 502Google Scholar

  • 图 1  (a) Au/CdZnTe/Au器件结构示意图; (b) CdZnTe晶体内缺陷能级分布图

    Figure 1.  (a) Schematic diagram of Au/CdZnTe/Au device structure; (b) distributions of defect energy levels in CdZnTe crystal.

    图 2  不同偏压下的Au/CdZnTe/Au器件仿真结果 (a) 载流子浓度分布; (b) 深施主的电离浓度分布; (c) 空间电荷浓度分布; (d) 内部电场强度分布变化规律

    Figure 2.  Simulation results of Au/CdZnTe/Au device under different bias voltages: (a) Distribution of carrier concentration; (b) density of ionized deep donors; (c) distribution of space charge concentration; (d) distribution of internal electric field intensity.

    图 3  Au/CdZnTe/Au器件内能带和内部电场分布示意图 (a) 热平衡的Au/CdZnTe/Au能带结构图; (b) U > 0的Au/CdZnTe/Au能带结构图; (c) 内部电场分布示意图

    Figure 3.  Energy-band diagram and internal electric field distribution in Au/CdZnTe/Au device: (a) Au/CdZnTe/Au energy-band diagram in thermal equilibrium; (b) Au/CdZnTe/Au energy-band diagram under U > 0; (c) schematic diagram of internal electric field distribution.

    图 4  100 V偏压下Au/CdZnTe/Au器件不同深施主浓度下的 (a) 空间电荷分布特性; (b) 内部电场分布特性

    Figure 4.  Space charge distributions (a) and internal electric field distribution (b) of Au/CdZnTe/Au devices with different deep donor concentrations under bias of 100 V.

    图 5  100 V偏压下Au/CdZnTe/Au器件不同深施主位置下的 (a) 空间电荷分布特性; (b)内部电场分布特性

    Figure 5.  Space charge distributions (a) and internal electric field distribution (b) of Au/CdZnTe/Au devices with different depths of deep donor under bias of 100 V.

    表 1  CdZnTe晶体的基本参数

    Table 1.  Basic parameters of CdZnTe crystals.

    介电常数300 K时禁带宽度/eV300 K时导带密度/cm–3300 K时价带密度/cm–3电子迁移率/ cm2·V–1·s–1空穴迁移率/cm2·V–1·s–1
    10.91.69.14 × 10175.19 × 10181000100
    DownLoad: CSV

    表 2  深施主能级的基本信息

    Table 2.  Basic information of deep donor energy levels.

    类型位置/eV浓度/cm–3电子俘获界面/cm2空穴俘获界面/cm2简并度
    Donor1Ev + 0.865 × 10123 × 10–143 × 10–152
    Donor2Ev + 0.861 × 10123 × 10–143 × 10–152
    Donor3Ev + 0.861 × 10133 × 10–143 × 10–152
    DownLoad: CSV

    表 3  不同深能级缺陷浓度下CdZnTe晶体的电阻率仿真结果

    Table 3.  The resistivity of CdZnTe crystals at different deep energy level concentrations via simulation.

    能级类型位置/eV浓度/cm–3电阻率/Ω·cm
    无深施主能级6.08 × 105
    Donor1Ev + 0.865 × 10111.50 × 1010
    Donor2Ev + 0.861 × 10126.66 × 109
    Donor3Ev + 0.861 × 10136.05 × 108
    DownLoad: CSV
  • [1]

    Czyz S A, Farsoni A T, Gadey H R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 945 162614Google Scholar

    [2]

    Johns P M, Nino J C 2019 J. Appl. Phys. 126 040902Google Scholar

    [3]

    Guo Q, Beilicke M, Garson A, Kislat F, Fleming D, Krawczynski H 2012 Astropart. Phys. 41 63Google Scholar

    [4]

    Prokesch M, Soldner S A, Sundaram A G, Reed M D, Li H, Eger J F, Reiber J L, Shanor C L, Wray C L, Emerick A J, Peters A F, Jones C L 2016 IEEE Trans. Nucl. Sci. 63 1854Google Scholar

    [5]

    Chai L, Chen L, Yang C P, Zhou D D, Yang M M, Qu W W, Zhang G L, Hei D Q, Xu S P, Chen X J 2019 Nucl. Sci. Tech. 30 91Google Scholar

    [6]

    Jiang W, Chalich Y, Deen M J 2019 Sensors 19 5019Google Scholar

    [7]

    Iniewski K 2014 J. Instrum. 9 C11001Google Scholar

    [8]

    Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [9]

    Chu M, Terterian S, Ting D, Wang C C, Gurgenian H K, Mesropian S 2001 Appl. Phys. Lett. 79 2728Google Scholar

    [10]

    Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945Google Scholar

    [11]

    Bale D S, Szeles C 2008 Phys. Rev. B 77 035205Google Scholar

    [12]

    Soldner S A, Bale D S, Szeles C 2007 IEEE Trans. Nucl. Sci. 54 1723Google Scholar

    [13]

    Cola A, Farella I 2013 Sensors 13 9414Google Scholar

    [14]

    Li Y, Zha G, Guo Y, Xi S, Xu L, Jie W 2020 Sensors 20 383Google Scholar

    [15]

    Bale D S, Soldner S A, Szeles C 2008 Appl. Phys. Lett. 92 082101.1Google Scholar

    [16]

    Camarda G S, Bolotnikov A E, Cui Y, Hossain A, Awadalla S A, Mackenzie J, Chen H, James R B 2007 IEEE Nuclear Science Symposium Conference Record Honolulu, Hawaii, USA, October 26 – November 3, 2007 p1798

    [17]

    Musiienko A, Grill R, Pekárek J, Belas E, Praus P, Pipek J, Dědič V, Elhadidy H 2017 Appl. Phys. Lett. 111 082103.1Google Scholar

    [18]

    Mahmood S A 2019 J. Appl. Phys. 125 214505Google Scholar

    [19]

    Thomas B, Veale M C, Wilson M D, Seller P, Schneider A, Iniewski K 2017 J. Instrum. 12 C12045Google Scholar

    [20]

    Maneuski D, Gostilo V, Owens A 2019 J. Phys. D: Appl. Phys. 53 015114Google Scholar

    [21]

    Das A, Duttagupta S P 2015 Radiat.Prot. Dosim. 167 443Google Scholar

    [22]

    Johannesson D, Nawaz M, Nee H P 2019 Mater. Sci. Forum. 963 670Google Scholar

    [23]

    唐龙谷 2014 半导体工艺和器件仿真软件Silvaco TCAD实用教程 (北京: 清华大学出版社) 第99页

    Tang L G 2014 Semiconductor Process and Device Simulation Software Silvaco TCAD Practical Tutorial (Beijing: Tsinghua University Press) p99 (in Chinese)

    [24]

    Prokesch M, Szeles C 2007 Phys. Rev. B 75 245204.1Google Scholar

    [25]

    Gul R, Roy U N, James R B 2017 J. Appl. Phys. 121 115701.1Google Scholar

    [26]

    Simmons J G, Taylor G W 1971 Phys. Rev. B 4 502Google Scholar

  • [1] Wang He-Yu, Li Zhong-Lei, Du Bo-Xue. Effect of interfacial electronic structure on conductivity and space charge characteristics of core-shell quantum dots/polyethylene nanocomposite insulation. Acta Physica Sinica, 2024, 73(12): 127702. doi: 10.7498/aps.73.20232041
    [2] Zhao Da-Shuai, Sun Zhi, Sun Xing, Sun Huai-De, Han Bai. Micro gap air discharge based on fractal theory. Acta Physica Sinica, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [3] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [4] Liang Ming-Hui, Zheng Fei-Hu, An Zhen-Lian, Zhang Ye-Wen. Numerical extraction of electric field distribution from thermal pulse method based on Monte Carlo simulation. Acta Physica Sinica, 2016, 65(7): 077702. doi: 10.7498/aps.65.077702
    [5] Liu Kang-Lin, Liao Rui-Jin, Zhao Xue-Tong. Measurement of space charges in air based on sound pulse method. Acta Physica Sinica, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [6] Zuo Ying-Hong, Wang Jian-Guo, Zhu Jin-Hui, Niu Sheng-Li, Fan Ru-Yu. Investigation of the cathode electric field at the initial stage of explosive electron emission. Acta Physica Sinica, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [7] Li Wei-Qin, Zhang Hai-Bo, Lu Jun. Charging effects of SiO2 thin films under defocused electron beam irradiation. Acta Physica Sinica, 2012, 61(2): 027302. doi: 10.7498/aps.61.027302
    [8] Liao Rui-Jin, Wu Fei-Fei, Liu Xing-Hua, Yang Fan, Yang Li-Jun, Zhou Zhi, Zhai Lei. Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air. Acta Physica Sinica, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [9] Tu De-Min, Wang Xia, Lü Ze-Peng, Wu Kai, Peng Zong-Ren. Formation and inhibition mechanisms of space charges in direct current polyethylene insulation explained by energy band theory. Acta Physica Sinica, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [10] Liao Rui-Jin, Zhou Tian-Chun, George Chen, Yang Li-Jun. A space charge trapping model and its parameters in polymeric material. Acta Physica Sinica, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [11] Chen Xuan, An Zhen-Lian, Liu Chen-Xia, Zhang Ye-Wen, Zheng Fei-Hu. Influence of surface fluorination temperature on space charge accumulation in polyethylene. Acta Physica Sinica, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [12] An Zhen-Lian, Liu Chen-Xia, Chen Xuan, Zheng Fei-Hu, Zhang Ye-Wen. Space charge in surface fluorinated polyethylene. Acta Physica Sinica, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [13] Chen Xi, Wang Xia, Wu Kai, Peng Zong-Ren, Cheng Yong-Hong. Effect of temperature gradient on space charge waveform in pulsed electroacoustic method. Acta Physica Sinica, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [14] Xiao Chun, Zhang Ye-Wen, Lin Jia-Qi, Zheng Fei-Hu, An Zhen-Lian, Lei Qing-Quan. Research of the recombination rate of space charge in LDPE film during the short-circuit discharge process via the photon counting method. Acta Physica Sinica, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [15] Zhao Min, An Zhen-Lian, Yao Jun-Lan, Xie Chen, Xia Zhong-Fu. Trap capture properties of space charge and void breakdown charge in a cellular polypropylene electret film. Acta Physica Sinica, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [16] Yang Qiang, An Zhen-Lian, Zheng Fei-Hu, Zhang Ye-Wen. The relationship between energy distribution and space distribution of charge traps in linear low density polyethylene. Acta Physica Sinica, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [17] Wang Shao-Kai, Ren Ji-Gang, Jin Xian-Min, Yang Bin, Yang Dong, Peng Cheng-Zhi, Jiang Shuo, Wang Xiang-Bin. The design of entangled source for free space quantum communications. Acta Physica Sinica, 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [18] An Zhen-Lian, Yang Qiang, Zheng Fei-Hu, Zhang Ye-Wen. Space charges formed in the hot compression molding process of low density polyethylene. Acta Physica Sinica, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [19] Zheng Fei-Hu, Zhang Ye-Wen, Wu Chang-Shun, Li Ji-Xiao, Xia Zhong-Fu. Piezo-PWP and PEA methods for measuring space charge in solid dielectric. Acta Physica Sinica, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
    [20] Wang Yin-Shu, Sun Ping, Ding Shuo, Luo Xu-Hui, Li Na, Wang Ruo-Zhen. . Acta Physica Sinica, 2002, 51(12): 2892-2895. doi: 10.7498/aps.51.2892
Metrics
  • Abstract views:  7500
  • PDF Downloads:  212
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2020
  • Accepted Date:  14 July 2020
  • Available Online:  09 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回