Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bipartite and tripartite entanglement caused by squeezed drive in magnetic-cavity quantum electrodynamics system

Zhou Ying Xie Shuang-Yuan Xu Jing-Ping

Citation:

Bipartite and tripartite entanglement caused by squeezed drive in magnetic-cavity quantum electrodynamics system

Zhou Ying, Xie Shuang-Yuan, Xu Jing-Ping
PDF
HTML
Get Citation
  • Utilizing optical nonlinearity for generating the entanglement is still a most widely used approach due to its quality and simplicity. Here in this paper, we propose a theoretical scheme to generate bipartite and tripartite entanglement in a cavity quantum electrodynamics (QED) system with one Yttrium iron garnet (YIG) sphere by using a squeezed drive. In such a system, the parametric down-conversion process is used to generate the nonlinearity and further increase the coupling between cavity and YIG. Thus, the enhanced coupling between the microwave cavity photons and the ferromagnetic resonance (FMR) mode/magnetostatic (MS) mode results in bipartite entanglements. By using the mean field theory, we show that the bipartite entanglements strongly depend on the detuning of the cavity and magnon mode. When the driving field is tuned to be resonant with the FMR mode, but the MS mode is far off-resonant, the entanglement between photons and the FMR mode reaches its maximum. However, when the driving field is tuned to be resonant with the MS mode, but the FMR mode is detuned very well, the entanglement between photons and the MS mode reaches its maximum. We show that the dissipation of the FMR/MS mode affects the entanglement greatly, and the bipartite entanglement decreases as the dissipation rate of the FMR/MS mode increases. Under the steady-state approximation, we also show that the tripartite entanglement can be generated, and the minimum residual contangle increases with the enhancement of the nonlinear gain coefficient. With the nonlinearity induced by the parametric down conversion process, the interaction between the driving field and the magnetic-cavity QED system leads to the tripartite entanglement involving the cavity photons, FMR mode and the MS mode. Likewise, we show that the tripartite entanglement also strongly depends on the dissipation rate of MS mode, and the minimum residual contangle increases as the dissipation rate of the MS mode decreases. We also show that the squeezed field induced tripartite entanglement is insensitive to the temperature and has good robustness. Our results suggest that the magnetic-cavity QED system could provide a promising platform for studying the macroscopic quantum phenomena, and the squeezing field opens a new method of generating the entanglement.
      Corresponding author: Xie Shuang-Yuan, xieshuangyuan@tongji.edu.cn ; Xu Jing-Ping, xx_jj_pp@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874287, 11774262, 61975154) and the Science and Technology Commission of Shanghai, China (Grant No. 18JC1410900)
    [1]

    Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E 2019 Rev. Mod. Phys. 91 025005Google Scholar

    [2]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [3]

    Hou K, Bao D Q, Zhu C J, Yang Y P 2019 Quantum. Inf. Process. 18 104Google Scholar

    [4]

    Hou K, Bao D Q, Zhu C J, Yang Y P 2019 Laser Phys. 29 015201Google Scholar

    [5]

    Han Y F, Zhu C J, Huang X S, Yang Y P 2018 Phys. Rev. A 98 033828Google Scholar

    [6]

    Lin J Z, Hou K, Zhu C J, Yang Y P 2019 Phys. Rev. A 99 053850Google Scholar

    [7]

    Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203Google Scholar

    [8]

    Ashhab S 2013 Phys. Rev. A 87 013826Google Scholar

    [9]

    Han Y F, Zhu C J, Huang X S, Yang Y P 2018 Chin. Phys. B 27 124206Google Scholar

    [10]

    Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602Google Scholar

    [11]

    Zhu C J, Yang Y P, Agarwal G S 2017 Phys. Rev. A 95 063842Google Scholar

    [12]

    Hou K, Zhu C J, Yang Y P, Agarwal G S 2019 Phys. Rev. A 100 063817Google Scholar

    [13]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [14]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [15]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002Google Scholar

    [16]

    Zhang X F, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [17]

    Kittel C 1948 Phys. Rev. 73 155Google Scholar

    [18]

    Bai L H, Harder M, Chen Y P, Fan X, Xiao JQ, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [19]

    Zhang D K, Wang X M, Li T F, Lou X Q, Wu W D, Nori F, You J Q 2015 Npj Quantum. Inf. 1 15014Google Scholar

    [20]

    Bourhill J, Kostylev N, Goryachev M, Creedon D L, Tobar M E 2016 Phys. Rev. B 93 144420Google Scholar

    [21]

    Kostylev N, Goryachev M, Tobar M E 2016 Appl. Phys. Lett. 108 062402Google Scholar

    [22]

    Wang Y P, Zhang G Q, Zhang D K, Liu T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [23]

    Bai L H, Harder M, Hyde P, Zhang Z H, Hu C M, Chen Y P, Xiao J Q 2017 Phys. Rev. Lett. 118 217201Google Scholar

    [24]

    Zhang X F, Zou C L, Zhu N, Marquardt F, Jiang L, Tang H X 2015 Nat. Commun. 6 8914Google Scholar

    [25]

    Wang B, Liu Z X, Kong C, Xiong H, Wu Y 2018 Opt. Express 26 20248Google Scholar

    [26]

    Kong C, Wang B, Liu Z X, Xiong H, Wu Y 2019 Opt. Express 27 5544Google Scholar

    [27]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar

    [28]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [29]

    Li J, Zhu S Y 2019 New J. Phys. 21 085001Google Scholar

    [30]

    Zhang Z D, Scully M O, Agarwal G S 2019 Phys. Rev. Res. 1 023021Google Scholar

    [31]

    Nair J M P, Agarwal G S 2020 Appl. Phys. Lett. 117 084001

    [32]

    Zhu C J, Ping L L, Yang Y P, Agarwal G S 2020 Phys. Rev. Lett. 124 073602Google Scholar

    [33]

    Bao D Q, Zhu C J, Yang Y P, Agarwal G S 2019 Opt. Express 27 15540Google Scholar

    [34]

    Stancil D D, Prabhakar A 2009 Spin Waves Theory and Applications (New York: Springer) pp139−168

    [35]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [36]

    Gardiner C W, Zoller P 2000 Quantum Noise (New York: Springer) pp164−179

    [37]

    Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405Google Scholar

    [38]

    Parks P C, Hahn V 1993 Stability Theory (New York: Prentice Hall) pp57−71

    [39]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [40]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [41]

    Adesso G, Illuminati F 2006 New J. Phys. 8 15Google Scholar

    [42]

    Adesso G, Illuminati F 2007 J. Phys. A: Math. Theor. 40 7821Google Scholar

  • 图 1  (a) 磁-腔QED系统示意图. YIG小球位于腔中短边中心处, 该处微波腔的TE102模式的磁场沿y轴方向, 静磁场沿x轴方向; (b) 利用Comsol模拟微波腔TE102的网格划分示意图; (c) 微波腔TE102模式的磁场方向和磁场强度

    Figure 1.  (a) Schematic diagram of a magnetic-cavity QED system. A YIG sphere is located at the center of one short edge in the cavity, where magnetic field of microwave cavity mode TE102 is along y-axis direction, and static magnetic field is along x-axis direction; (b) schematic diagram of grid of microwave cavity mode TE102 by Comsol simulation; (c) magnetic field direction and magnetic field intensity of the microwave cavity mode TE102.

    图 2  (a) 平均光子数、(b) FMR模的平均磁子数和 (c) MS模的平均磁子数随失谐量${\varDelta _{{m_1}}}$${\varDelta _{\rm{c}}}$的变化关系, 其中$\gamma /2{\rm{\pi = 1}}{\rm{.0\;MHz}}$. 取${\varepsilon _{\rm{p}}} = \gamma $, $\varOmega = 1.5\gamma $, 其他参数已在正文中给出

    Figure 2.  (a) Average photon number, (b) FMR mode average magnon number, and (c) MS mode average magnon number versus detunings ${\varDelta _{{m_1}}}$and${\varDelta _{\rm{c}}}$, where, $\gamma /2\rm{\pi} = 1{\rm{.0\;MHz}}$. We take${\varepsilon _{\rm{p}}} = \gamma $, $\varOmega = 1.5\gamma $. Other parameters are given in the text.

    图 3  两体纠缠的负值度 (a) ${E_{a{m_1}}}$, (b) ${E_{a{m_2}}}$和(c) ${E_{{m_1}{m_2}}}$随失谐量${\varDelta _{{m_1}}}$${\varDelta _{\rm{c}}}$的变化关系. 其中${\varepsilon _{\rm{p}}} = \gamma $, $\varOmega = 1.5\gamma $. (d)负值度${E_{a{m_1}}}$ (实线)、${E_{a{m_2}}}$ (虚线)和${E_{{m_1}{m_2}}}$ (点划线)随非线性增益$\varOmega $的变化. 其中${\varepsilon _{\rm{p}}} = \gamma $, ${\varDelta _{\rm{c}}} = - 2.5\gamma $, ${\varDelta _{{m_1}}} = 23\gamma $. 其他参数与图2一致

    Figure 3.  Density plot of logarithmic negativity related to bipartite entanglement (a) ${E_{a{m_1}}}$, (b) ${E_{a{m_2}}}$, and (c) ${E_{{m_1}{m_2}}}$ versus detunings ${\varDelta _{{m_1}}}$ and ${\varDelta _{\rm{c}}}$, where ${\varepsilon _{\rm{p}}} = \gamma $, $\varOmega = 1.5\gamma $. (d) Logarithmic negativity ${E_{a{m_1}}}$ (solid), ${E_{a{m_2}}}$ (dashed), and${E_{{m_1}{m_2}}}$ (dot-dashed) versus the nonlinear gain coefficient $\varOmega $, we take ${\varepsilon _{\rm{p}}} = \gamma $, ${\varDelta _{\rm{c}}} = - 2.5\gamma $ and${\varDelta _{{m_1}}} = 23\gamma $. The other parameters are the same as in Fig.2.

    图 4  (a) 不同非线性增益情况下, 三体纠缠的最小剩余共生纠缠$R_\tau ^{{\rm{min}}}$随失谐量${\varDelta _{{m_1}}}$的变化关系; (b) 最小剩余共生纠缠$R_\tau ^{{\rm{min}}}$随温度T的变化, 其中${\varepsilon _{\rm{p}}} = \gamma $, ${\varDelta _{\rm{c}}} = - 2.5\gamma $. 虚线、实线、点线和点划线分别对应非线性相互作用强度$\varOmega = 1.65\gamma $, $\varOmega = 1.5\gamma $, $\varOmega = 1.0\gamma $$\varOmega = 0.5\gamma $的情况. 在图4(b)中, 取${\varDelta _{{m_1}}} = 23\gamma $, 其他参数与图2一致

    Figure 4.  (a) Tripartite entanglement in terms of the minimum residual contangle $R_\tau ^{{\rm{min}}}$ versus detuning ${\varDelta _{{m_1}}}$; (b) robust against temperature of the minimum residual contangle $R_\tau ^{{\rm{min}}}$, Where ${\varepsilon _{\rm{p}}} = \gamma $, ${\varDelta _{\rm{c}}} = - 2.5\gamma $. The dashed line, solid line, dotted line, and dash-dot line indicate nonlinear interaction strength $\varOmega = 1.65\gamma $, $\varOmega = 1.5\gamma $, $\varOmega = 1.0\gamma $, and $\varOmega = 0.5\gamma $, respectively. At the same time, we take ${\varDelta _{{m_1}}} = 23\gamma $ for Fig. 4 (b). The other parameters are the same as in Fig. 2.

    图 5  三体纠缠的最小剩余共生纠缠$R_\tau ^{{\rm{min}}}$随失谐量${\varDelta _{{m_1}}}$和耗散系数${\kappa _2}$的变化关系; 设定${\varepsilon _{\rm{p}}} = \gamma $, $\varOmega = 1.5\gamma $, ${\varDelta _{\rm{c}}} = - 2.5\gamma $, 从左到右, ${\kappa _2}$所取的数值分别为$1.7\gamma $, $2.1\gamma $, $2.5\gamma $, $2.9\gamma $以及$3.3\gamma $. 其他参数与图2一致

    Figure 5.  Tripartite entanglement in terms of the minimum residual contangle $R_\tau ^{{\rm{min}}}$ versus detuning ${\varDelta _{{m_1}}}$ and dissipation rates ${\kappa _2}$, setting ${\varepsilon _{\rm{p}}} = \gamma $, $\varOmega = 1.5\gamma $ and ${\varDelta _{\rm{c}}} = - 2.5\gamma $, the lines denote $1.7\gamma $, $2.1\gamma $, $2.5\gamma $, $2.9\gamma $, and $3.3\gamma $for ${\kappa _2}$ from left to right. The other parameters are the same as in Fig. 2.

  • [1]

    Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E 2019 Rev. Mod. Phys. 91 025005Google Scholar

    [2]

    Reiserer A, Rempe G 2015 Rev. Mod. Phys. 87 1379Google Scholar

    [3]

    Hou K, Bao D Q, Zhu C J, Yang Y P 2019 Quantum. Inf. Process. 18 104Google Scholar

    [4]

    Hou K, Bao D Q, Zhu C J, Yang Y P 2019 Laser Phys. 29 015201Google Scholar

    [5]

    Han Y F, Zhu C J, Huang X S, Yang Y P 2018 Phys. Rev. A 98 033828Google Scholar

    [6]

    Lin J Z, Hou K, Zhu C J, Yang Y P 2019 Phys. Rev. A 99 053850Google Scholar

    [7]

    Zhang P F, Zhang Y C, Li G, Du J J, Zhang Y F, Guo Y Q, Wang J M, Zhang T C, Li W D 2011 Chin. Phys. Lett. 28 044203Google Scholar

    [8]

    Ashhab S 2013 Phys. Rev. A 87 013826Google Scholar

    [9]

    Han Y F, Zhu C J, Huang X S, Yang Y P 2018 Chin. Phys. B 27 124206Google Scholar

    [10]

    Ridolfo A, Leib M, Savasta S, Hartmann M J 2012 Phys. Rev. Lett. 109 193602Google Scholar

    [11]

    Zhu C J, Yang Y P, Agarwal G S 2017 Phys. Rev. A 95 063842Google Scholar

    [12]

    Hou K, Zhu C J, Yang Y P, Agarwal G S 2019 Phys. Rev. A 100 063817Google Scholar

    [13]

    Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar

    [14]

    Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar

    [15]

    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E 2014 Phys. Rev. Appl. 2 054002Google Scholar

    [16]

    Zhang X F, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar

    [17]

    Kittel C 1948 Phys. Rev. 73 155Google Scholar

    [18]

    Bai L H, Harder M, Chen Y P, Fan X, Xiao JQ, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar

    [19]

    Zhang D K, Wang X M, Li T F, Lou X Q, Wu W D, Nori F, You J Q 2015 Npj Quantum. Inf. 1 15014Google Scholar

    [20]

    Bourhill J, Kostylev N, Goryachev M, Creedon D L, Tobar M E 2016 Phys. Rev. B 93 144420Google Scholar

    [21]

    Kostylev N, Goryachev M, Tobar M E 2016 Appl. Phys. Lett. 108 062402Google Scholar

    [22]

    Wang Y P, Zhang G Q, Zhang D K, Liu T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar

    [23]

    Bai L H, Harder M, Hyde P, Zhang Z H, Hu C M, Chen Y P, Xiao J Q 2017 Phys. Rev. Lett. 118 217201Google Scholar

    [24]

    Zhang X F, Zou C L, Zhu N, Marquardt F, Jiang L, Tang H X 2015 Nat. Commun. 6 8914Google Scholar

    [25]

    Wang B, Liu Z X, Kong C, Xiong H, Wu Y 2018 Opt. Express 26 20248Google Scholar

    [26]

    Kong C, Wang B, Liu Z X, Xiong H, Wu Y 2019 Opt. Express 27 5544Google Scholar

    [27]

    Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar

    [28]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [29]

    Li J, Zhu S Y 2019 New J. Phys. 21 085001Google Scholar

    [30]

    Zhang Z D, Scully M O, Agarwal G S 2019 Phys. Rev. Res. 1 023021Google Scholar

    [31]

    Nair J M P, Agarwal G S 2020 Appl. Phys. Lett. 117 084001

    [32]

    Zhu C J, Ping L L, Yang Y P, Agarwal G S 2020 Phys. Rev. Lett. 124 073602Google Scholar

    [33]

    Bao D Q, Zhu C J, Yang Y P, Agarwal G S 2019 Opt. Express 27 15540Google Scholar

    [34]

    Stancil D D, Prabhakar A 2009 Spin Waves Theory and Applications (New York: Springer) pp139−168

    [35]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [36]

    Gardiner C W, Zoller P 2000 Quantum Noise (New York: Springer) pp164−179

    [37]

    Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405Google Scholar

    [38]

    Parks P C, Hahn V 1993 Stability Theory (New York: Prentice Hall) pp57−71

    [39]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [40]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [41]

    Adesso G, Illuminati F 2006 New J. Phys. 8 15Google Scholar

    [42]

    Adesso G, Illuminati F 2007 J. Phys. A: Math. Theor. 40 7821Google Scholar

  • [1] Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Li Xiang, Zhu Hao-Nan. Squeezing angle locking of entangled microwave based on photon counting. Acta Physica Sinica, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [2] Zhang Zhi-Yu, Zhao Yang, Xue Quan-Xi, Wang Feng, Yang Jia-Min. Optical transparency of transparent window LiF in laser-driven quasi-isentropic compression experiment. Acta Physica Sinica, 2015, 64(20): 205202. doi: 10.7498/aps.64.205202
    [3] Wang Feng, Peng Xiao-Shi, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Quasi-isentropic experiment based on Shen Guang-III prototype laser facility with laser direct drive illumination. Acta Physica Sinica, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [4] Zhao Ji-Bo, Sun Cheng-Wei, Gu Zhuo-Wei, Zhao Jian-Heng, Luo Hao. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process. Acta Physica Sinica, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [5] Qin Meng, Li Yan-Biao, Bai Zhong. Effects of inhomogeneous magnetic field and magnetic impurity on the quantum correlation of spin-1 system. Acta Physica Sinica, 2015, 64(3): 030301. doi: 10.7498/aps.64.030301
    [6] Yao Xiong-Liang, Ye Xi, Zhang A-Man. Cavitation bubble in compressible fluid subjected to traveling wave. Acta Physica Sinica, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [7] Cai Cheng-Jun, Fang Mao-Fa, Xiao Xing, Huang Jiang. Atomic entropy squeezing of the Jaynes-Cummings model driven by classical fields in non-Markovian environment. Acta Physica Sinica, 2012, 61(21): 210303. doi: 10.7498/aps.61.210303
    [8] Dong Jian-Jun, Ding Yong-Kun, Cao Zhu-Rong, Zhang Ji-Yan, Cheng Bo-Lun, Yang Zheng-Hua, Deng Bo, Yuan Zheng, Jiang Shao-En. Core condition analysis of radiation driven implosion for maximum compression. Acta Physica Sinica, 2012, 61(22): 225204. doi: 10.7498/aps.61.225204
    [9] Shan Lian-Qiang, Gao Yu-Lin, Xin Jian-Ting, Wang Feng, Peng Xiao-Shi, Xu Tao, Zhou Wei-Min, Zhao Zong-Qing, Cao Lei-Feng, Wu Yu-Chi, Zhu Bin, Liu Hong-Jie, Liu Dong-Xiao, Shui Min, He Ying-Ling, Zhan Xia-Yu, Gu Yu-Qiu. Laser-driven reservoir target for quasi-isentropic compression in aluminum. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [10] Lü Jing-Fen, Ma Shan-Jun. Fidelity of the photon subtracted (or added) squeezed vacuum state and squeezed cat state. Acta Physica Sinica, 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [11] Lu He-Lin, Wang Shun-Jin. Zonal flow dynamics in background of ion-temperature-gradient mode turbulence based on minimal freedom model. Acta Physica Sinica, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [12] Zhou Bing-Ju, Liu Xiao-Juan, Fang Mao-Fa, Zhou Qing-Ping, Liu Ming-Wei. Negative quantum conditional entropy and the entanglement measure of a kind of mixed state of bipartite quantum system. Acta Physica Sinica, 2007, 56(7): 3937-3944. doi: 10.7498/aps.56.3937
    [13] Wang Zhong-Chun. Effect of external field on the fidelity of quantum states in the two-atom Tavis-Cummings model. Acta Physica Sinica, 2006, 55(9): 4624-4630. doi: 10.7498/aps.55.4624
    [14] Huang Yan-Xia, Zhao Peng-Yi, Huang Xi, Zhan Ming-Sheng. Entanglement and disentanglement in the nonlinear interaction between squeezing vacuum state field and atom. Acta Physica Sinica, 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [15] Cheng Jin-Xiu, Zheng Zhi-Jian, Chen Hong-Su, Miao Wen-Yong, Chen Bo, Wang Yao-Mei, Hu Xin. Implosion compression characteristic of direct-driven ablation target with 1.06μm laser. Acta Physica Sinica, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [16] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [17] HU XIANG-MING, PENG JIN-SHENG. PHOTON NOISE SQUEEZING AND ITS PHYSICAL MECHANISM OF A DRIVEN V-TYPE THREE-LEVEL LASER. Acta Physica Sinica, 1998, 47(10): 1632-1640. doi: 10.7498/aps.47.1632
    [18] LIU JIA-REN, ZHAO BO, WANG YU-ZHU. ENHANCING THE NUMBER-NOISE SQUEEZING OF OUTPUT LIGHT OF A LED DRIVEN BY HIGH-IMPEDANCE CONSTANT-CURRENT SOURCE USING NEGATIVE FEEDBACK. Acta Physica Sinica, 1994, 43(10): 1598-1604. doi: 10.7498/aps.43.1598
    [19] YANG GUO-JIAN, HU GANG. TEMPORAL SQUEEZING IN THE RADIATION OF THE FLUORESCENCE FROM A DRIVEN THREE-LEVEL ATOM. Acta Physica Sinica, 1993, 42(9): 1403-1409. doi: 10.7498/aps.42.1403
    [20] ZHANG LIN, LIN REN-MING. MULTI-PHOTON SQUEEZING EFFECT FOR THE MIXED ABSORPTIVE-DISPERSIVE DRIVEN OPTICAL SYSTEM IN GOOD CAVITY CASE. Acta Physica Sinica, 1990, 39(11): 1714-1720. doi: 10.7498/aps.39.1714
Metrics
  • Abstract views:  6711
  • PDF Downloads:  162
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2020
  • Accepted Date:  30 June 2020
  • Available Online:  10 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回