搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非马尔可夫环境下经典场驱动Jaynes-Cummings模型中原子的熵压缩

蔡诚俊 方卯发 肖兴 黄江

引用本文:
Citation:

非马尔可夫环境下经典场驱动Jaynes-Cummings模型中原子的熵压缩

蔡诚俊, 方卯发, 肖兴, 黄江

Atomic entropy squeezing of the Jaynes-Cummings model driven by classical fields in non-Markovian environment

Cai Cheng-Jun, Fang Mao-Fa, Xiao Xing, Huang Jiang
PDF
导出引用
  • 运用非马尔可夫量子理论与熵压缩理论, 研究了非马尔可夫环境下经典场驱动Jaynes-Cummings模型中原子的熵压缩, 考察了非马尔可夫效应、经典场驱动、体系失谐量对原子熵压缩的影响. 用非马尔可夫过程的记忆效应解释了原子熵压缩的动力学行为. 结果表明: 非马尔可夫效应和经典场驱动的共同作用有利于原子熵压缩的产生与维持. 在非马尔可夫环境下, 通过选择适当的系统参数, 可以产生压缩度大、 压缩持续时间长的原子熵压缩态. 研究结果为利用光场-原子相互作用制备压缩度大、 压缩持续时间长的最佳原子压缩态提供了可能途径.
    The atomic entropy squeezing of the Jaynes-Cummings model driven by classical fields in non-Markovian environment is investigated according to the non-Markovian quantum theory and the entropy squeezing theory. Our attention is focused on the influences of the non-Markovian effects, the Rabi frequencys of classical fields and the detuning on the atomic entropy squeezing. And we explain the atomic entropy squeezing dynamic by the memory effects of the non-Markovian processes. It is found that the atomic entropy squeezing can be maintained for a long time when both the Rabi frequencys of classical fields and the non-Markovian effect are present simultaneously. And we can obtain the optimal squeezing states by choosing appropriate parameters of the Rabi frequency and the detuning of classical field. Our results provide a potential method of generating high-degree squeezed and longtime atomic squeezing states by controlling the atom-field interaction.
    • 基金项目: 国家自然科学基金(批准号: 11074072)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074072).
    [1]

    Breuer H P, Burgarth D, Petruccione F 2004 Phys. Rev. B 70 045323

    [2]

    Fischer J, Breuer H P 2007 Phys. Rev. A 76 052119

    [3]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [4]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503

    [5]

    Scala M, Militello B, Messina A, Maniscalco S, Piilo J, Suominen K A 2008 Phys. Rev. A 77 043827

    [6]

    Piilo J, Maniscalco S, Härkönen, Suominen K A 2008 Phys. Rev. Lett. 100 180402

    [7]

    Bellomo B, Franco R L, Compagno G 2007 Phys. Rev. Lett. 99 160502

    [8]

    Bellomo B, Franco R L, Compagno G 2008 Phys. Rev. A 77 032342

    [9]

    Mazzola L, Maniscalco S, Piilo J, Suominen K A, Garraway B M 2009 Phys. Rev. A 79 042302

    [10]

    Mazzola L, Maniscalco S, Piilo J, Suominen K A, Garraway B M 2006 Phys. Rev. A 80 012104

    [11]

    Ban M, Kitajima S, Shibata F 2005 J. Phys. A: Math. Gen. 38 7161

    [12]

    Xiao X, Fang M F, Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505

    [13]

    Xiao X, Fang M F, Li Y L 2011 Phys. Scr. 83 015013

    [14]

    Sorensen J L, Hald J, Polzik E S 1998 Phys. Rev. Lett. 80 3487

    [15]

    Wineland D J, Bollinger J J, Itano W M 1994 Phys. Rev. A 50 67

    [16]

    Ye J, Kimble H J, Katori H 2008 Science 320 1734

    [17]

    Ban M 2000 J. Opt. B: Quantum Semiclass. Opt. 27 19

    [18]

    Ban M 2000 J. Opt. B: Quantum Semiclass. Opt. 27 86

    [19]

    Kuang L M, Zeng A H, Kuang Z H 2003 Phys. Lett. A 319 24

    [20]

    Wu Y, Yang X X 1997 Phys. Rev. Lett. 78 3086

    [21]

    Zhou L, Kuang L M 2002 Phys. Lett. A 302 273

    [22]

    Hillery M 2000 Phys. Rev. A 61 022309

    [23]

    Ralph T C 2000 Phys. Rev. A 61 010303R

    [24]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp501-607

    [25]

    Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [26]

    Dong C H 2001 Acta Phys. Sin. 50 1058 (in Chinese) [董传华 2001 物理学报 50 1058]

    [27]

    Tian Y H, Peng J S 1999 Acta Phys. Sin. 48 2060 (in Chinese) [田永红, 彭金生 1999 物理学报 48 2060]

    [28]

    Fang M F, Zhou P, Swain S 2000 J. Mod. Opt. 47 1043

    [29]

    Wu Y, Yang X X 2007 Phys. Rev. Lett. 98 013601

    [30]

    Ge G Q, Luo X L, Wu Y, Li Z G 1996 Phys. Rev. A 54 1604

    [31]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p472

  • [1]

    Breuer H P, Burgarth D, Petruccione F 2004 Phys. Rev. B 70 045323

    [2]

    Fischer J, Breuer H P 2007 Phys. Rev. A 76 052119

    [3]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [4]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503

    [5]

    Scala M, Militello B, Messina A, Maniscalco S, Piilo J, Suominen K A 2008 Phys. Rev. A 77 043827

    [6]

    Piilo J, Maniscalco S, Härkönen, Suominen K A 2008 Phys. Rev. Lett. 100 180402

    [7]

    Bellomo B, Franco R L, Compagno G 2007 Phys. Rev. Lett. 99 160502

    [8]

    Bellomo B, Franco R L, Compagno G 2008 Phys. Rev. A 77 032342

    [9]

    Mazzola L, Maniscalco S, Piilo J, Suominen K A, Garraway B M 2009 Phys. Rev. A 79 042302

    [10]

    Mazzola L, Maniscalco S, Piilo J, Suominen K A, Garraway B M 2006 Phys. Rev. A 80 012104

    [11]

    Ban M, Kitajima S, Shibata F 2005 J. Phys. A: Math. Gen. 38 7161

    [12]

    Xiao X, Fang M F, Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505

    [13]

    Xiao X, Fang M F, Li Y L 2011 Phys. Scr. 83 015013

    [14]

    Sorensen J L, Hald J, Polzik E S 1998 Phys. Rev. Lett. 80 3487

    [15]

    Wineland D J, Bollinger J J, Itano W M 1994 Phys. Rev. A 50 67

    [16]

    Ye J, Kimble H J, Katori H 2008 Science 320 1734

    [17]

    Ban M 2000 J. Opt. B: Quantum Semiclass. Opt. 27 19

    [18]

    Ban M 2000 J. Opt. B: Quantum Semiclass. Opt. 27 86

    [19]

    Kuang L M, Zeng A H, Kuang Z H 2003 Phys. Lett. A 319 24

    [20]

    Wu Y, Yang X X 1997 Phys. Rev. Lett. 78 3086

    [21]

    Zhou L, Kuang L M 2002 Phys. Lett. A 302 273

    [22]

    Hillery M 2000 Phys. Rev. A 61 022309

    [23]

    Ralph T C 2000 Phys. Rev. A 61 010303R

    [24]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp501-607

    [25]

    Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [26]

    Dong C H 2001 Acta Phys. Sin. 50 1058 (in Chinese) [董传华 2001 物理学报 50 1058]

    [27]

    Tian Y H, Peng J S 1999 Acta Phys. Sin. 48 2060 (in Chinese) [田永红, 彭金生 1999 物理学报 48 2060]

    [28]

    Fang M F, Zhou P, Swain S 2000 J. Mod. Opt. 47 1043

    [29]

    Wu Y, Yang X X 2007 Phys. Rev. Lett. 98 013601

    [30]

    Ge G Q, Luo X L, Wu Y, Li Z G 1996 Phys. Rev. A 54 1604

    [31]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p472

  • [1] 胡要花. Stark位移对热环境下双Jaynes-Cummings模型中原子纠缠的影响. 物理学报, 2012, 61(16): 160304. doi: 10.7498/aps.61.160304
    [2] 王继成, 廖庆洪, 王月媛, 王跃科, 刘树田. k光子Jaynes-Cummings模型与运动原子相互作用中的熵交换及纠缠. 物理学报, 2011, 60(11): 114208. doi: 10.7498/aps.60.114208
    [3] 廖长庚, 陈子翃, 罗成立. 非简并双光子Jaynes-Cummings模型中贝尔非定域性的演化. 物理学报, 2010, 59(12): 8526-8534. doi: 10.7498/aps.59.8526
    [4] 李悦科, 张桂明, 高云峰. 非简并双光子Jaynes-Cummings模型腔场谱中的量子干涉. 物理学报, 2010, 59(3): 1786-1790. doi: 10.7498/aps.59.1786
    [5] 刘王云, 毕思文, 豆西博. 囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性. 物理学报, 2010, 59(3): 1780-1785. doi: 10.7498/aps.59.1780
    [6] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [7] 康冬鹏, 任 珉, 马爱群, 钱 妍, 刘正君, 刘树田. k光子Jaynes-Cummings模型光场的熵压缩. 物理学报, 2008, 57(2): 873-879. doi: 10.7498/aps.57.873
    [8] 方卯发, 刘翔. 双光子Jaynes-Cummings模型中量子力学通道与量子互熵. 物理学报, 2000, 49(3): 435-440. doi: 10.7498/aps.49.435
    [9] 高云峰, 冯 健, 宋同强. 两原子双光子Jaynes-Cummings模型的腔场谱. 物理学报, 1999, 48(9): 1650-1658. doi: 10.7498/aps.48.1650
    [10] 宋克慧, 郭光灿. 通过大失谐Jaynes-Cummings模型实现类自旋的腔场GHZ态. 物理学报, 1999, 48(4): 661-666. doi: 10.7498/aps.48.661
    [11] 李高翔, 彭金生. 动态Stark移位对非简并双光子Jaynes-Cummings模型中相干捕获的影响. 物理学报, 1996, 45(1): 37-45. doi: 10.7498/aps.45.37
    [12] 王继锁, 王传奎. 双光子Jaynes-Cummings模型中场的振幅N次方压缩. 物理学报, 1995, 44(9): 1427-1434. doi: 10.7498/aps.44.1427
    [13] 詹佑邦. 非共振双光子Jaynes-Cummings模型中原子的偶极压缩. 物理学报, 1994, 43(6): 895-903. doi: 10.7498/aps.43.895
    [14] 方卯发, 周鹏. 附加克尔介质双光子Jaynes-Cummings模型的场熵特性. 物理学报, 1994, 43(4): 570-579. doi: 10.7498/aps.43.570
    [15] 方卯发. 非旋波近似下Jaynes-Cummings模型中的场熵演化. 物理学报, 1994, 43(11): 1776-1786. doi: 10.7498/aps.43.1776
    [16] 曹昌祺, 丁小宏. 非共振Jaynes-Cummings模型中强相干光的长时间挤压行为. 物理学报, 1992, 41(11): 1771-1781. doi: 10.7498/aps.41.1771
    [17] 李高翔, 彭金生. 旋波近似和非旋波近似下Jaynes-Cummings模型中光场位相涨落. 物理学报, 1992, 41(5): 766-773. doi: 10.7498/aps.41.766
    [18] 周鹏, 彭金生. 双光子Jaynes-Cummings模型中原子的压缩效应. 物理学报, 1989, 38(12): 2044-2048. doi: 10.7498/aps.38.2044
    [19] 罗耕贤, 郭光灿. 双色场Jaynes-Cummings模型的量子理论. 物理学报, 1988, 37(12): 1956-1964. doi: 10.7498/aps.37.1956
    [20] 顾樵. 双光子Jaynes-Cummings模型中的压缩. 物理学报, 1988, 37(5): 751-759. doi: 10.7498/aps.37.751
计量
  • 文章访问数:  6469
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-06
  • 修回日期:  2012-05-23
  • 刊出日期:  2012-11-05

/

返回文章
返回