Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influenza virus and coronavirus: Cellular binding and internalization

Bao Mei-Mei Yang Kai Yuan Bing

Citation:

Influenza virus and coronavirus: Cellular binding and internalization

Bao Mei-Mei, Yang Kai, Yuan Bing
PDF
HTML
Get Citation
  • Viruses are acellular organisms that must be parasitized in living cells and proliferated by replication. Although different viruses invade cells in different ways, they mainly initiate the invasion process through binding to specific receptor proteins or lipid structures on the cell surface for the following cellular internalization. Thus revealing the interaction process and underlying mechanism between viruses and cell membranes will be helpful in developing targeted drugs or vaccines from the source. In this review, the influenza virus and coronavirus are taken for example. We will first discuss the structure of influenza viruses, their binding modes with cell membranes, the way of realizing cell endocytosis and the cytokines involved in this process. After that, recent research progress of coronavirus especially the novel coronavirus SARS-CoV-2, including its structural characteristics, its binding with cell receptor ACE2 and the following cellular internalization, is briefly introduced.
      Corresponding author: Yang Kai, yangkai@suda.edu.cn ; Yuan Bing, yuanbing@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21422404, 21774092, U1532108, U1932121, 21728502) and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20171207, BK20171210)
    [1]

    Sieczkarski S B, Whittaker G R 2002 J. Gen. Virol. 83 1535Google Scholar

    [2]

    Nabi I R, Le P U 2003 J. Cell Biol. 161 673Google Scholar

    [3]

    Seto W H, Tsang D, Yung R W H, Ching T Y, Ng T K, Ho M, Ho L M, Peiris J S M, Auth A E S G H 2003 Lancet 361 1519Google Scholar

    [4]

    Wenzel R P, Edmond M B 2009 N. Engl. J. Med. 361 1991Google Scholar

    [5]

    de Groot R J, Baker S C, Baric R S, Brown C S, Drosten C, Enjuanes L, Fouchier R A M, Galiano M, Gorbalenya A E, Memish Z A, Perlman S, Poon L L M, Snijder E J, Stephens G M, Woo P C Y, Zaki A M, Zambon M, Ziebuhr J 2013 J. Virol. 87 7790Google Scholar

    [6]

    Gao R B, Cao B, Hu Y W, et al. 2013 N. Engl. J. Med. 368 1888Google Scholar

    [7]

    Song F X, Shi N N, Shan F, Zhang Z Y, Shen J, Lu H Z, Ling Y, Jiang Y B, Shi Y X 2020 Radiology 295 210Google Scholar

    [8]

    Li M, Ding H M, Lin M H, Yin F F, Song L, Mao X H, Li F, Ge Z L, Wang L H, Zuo X L, Ma Y Q, Fan C H 2019 J. Am. Chem. Soc. 141 18910Google Scholar

    [9]

    Wang H, Jiang C 2009 Sci. China. C Life Sci. 52 464Google Scholar

    [10]

    Lakadamyali M, Rust M J, Babcock H P, Zhuang X 2003 Proc. Natl. Acad. Sci. U. S. A. 100 9280Google Scholar

    [11]

    Fontana J, Steven A C 2013 J. Virol. 87 5621Google Scholar

    [12]

    Liu S L, Zhang Z L, Tian Z Q, Zhao H S, Liu H, Sun E Z, Xiao G F, Zhang W, Wang H Z, Pang D W 2011 ACS Nano 6 141Google Scholar

    [13]

    Babcock H P, Chen C, Zhuang X W 2004 Biophys. J. 87 2749Google Scholar

    [14]

    Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G 2020 Cell Res. 30 269Google Scholar

    [15]

    Lu H 2020 Biosci. Trends 14 69Google Scholar

    [16]

    Li R F, Hou Y L, Huang J C, Pan W Q, Ma Q H, Shi Y X, Li C F, Zhao J, Jia Z H, Jiang H M, Zheng K, Huang S X, Dai J, Li X B, Hou X T, Wang L, Zhong N A, Yang Z F 2020 Pharmacol. Res. 156 104761Google Scholar

    [17]

    Dadonaite B, Vijayakrishnan S, Fodor E, Bhella D, Hutchinson E C 2016 J. Gen. Virol. 97 1755Google Scholar

    [18]

    Mosley V M, Wyckoff R W G 1946 Nature 157 263Google Scholar

    [19]

    Taylor A R, Sharp D G, Beard D, Beard J W, Dingle J H, Feller A E 1943 J. Immunol. 47 261Google Scholar

    [20]

    Sharp D G, Taylor A R, McLean I W, Jr Beard D, Beard J W, Fellew A E, Dingle J H 1943 Science 98 307Google Scholar

    [21]

    Choppin P W, Murphy J S, Tamm I 1960 J. Exp. Med. 112 945Google Scholar

    [22]

    Kilbourne E D, Murphy J S 1960 J. Exp. Med. 111 387Google Scholar

    [23]

    Kumlin U, Olofsson S, Dimock K, Arnberg N 2008 Influenza Other Resp. 2 147Google Scholar

    [24]

    Rogers G N, D'Souza B L 1989 Virology 173 317Google Scholar

    [25]

    Connor R J, Kawaoka Y, Webster R G, Paulson J C 1994 Virology 205 17Google Scholar

    [26]

    Peng W J, de Vries R P, Grant O C, Thompson A J, McBride R, Tsogtbaatar B, Lee P S, Razi N, Wilson I A, Woods R J, Paulson J C 2017 Cell Host Microbe 21 23Google Scholar

    [27]

    Ng W C, Liong S, Tate M D, Irimura T, Denda-Nagai K, Brooks A G, Londrigan S L, Reading P C 2014 J. Virol. 88 1659Google Scholar

    [28]

    Goronzy I N, Rawle R J, Boxer S G, Kasson P M 2018 Chem. Sci. 9 2340Google Scholar

    [29]

    Ding H M, Li J, Chen N, Hu X J, Yang X F, Guo L J, Li Q, Zuo X L, Wang L H, Ma Y Q, Fan C H 2018 Acs Central Sci 4 1344Google Scholar

    [30]

    Verma D K, Gupta D, Lal S K 2018 Viruses 10 650Google Scholar

    [31]

    Byrd-Leotis L, Jia N, Dutta S, Trost J F, Gao C, Cummings S F, Braulke T, Muller-Loennies S, Heimburg-Molinaro J, Steinhauer D A, Cummings R D 2019 Sci. Adv. 5 eaav2554Google Scholar

    [32]

    Ng W C, Londrigan S L, Nasr N, Cunningham A L, Turville S, Brooks A G, Reading P C 2016 J. Virol. 90 206Google Scholar

    [33]

    Oh N, Park J H 2014 Int. J. Nanomed. 9 51Google Scholar

    [34]

    Geiser M 2010 J. Aerosol Med. Pulm. Drug Deliv. 23 207Google Scholar

    [35]

    Dourmashkin R R, Tyrrell D A 1974 J. Gen. Virol. 24 129Google Scholar

    [36]

    Matlin K S, Reggio H, Helenius A, Simons K 1981 J. Cell Biol. 91 601Google Scholar

    [37]

    Conner S D, Schmid S L 2003 Nature 422 37Google Scholar

    [38]

    Nichols B J, Lippincott-Schwartz J 2001 Trends Cell Biol. 11 406Google Scholar

    [39]

    Li Y, Yue T T, Yang K, Zhang X R 2012 Biomaterials 33 4965Google Scholar

    [40]

    Rust M J, Lakadamyali M, Zhang F, Zhuang X W 2004 Nat. Struct. Mol. Biol. 11 567Google Scholar

    [41]

    Sieczkarski S B, Whittaker G R 2002 J. Virol. 76 10455Google Scholar

    [42]

    Sun E Z, Liu A A, Zhang Z L, Liu S L, Tian Z Q, Pang D W 2017 ACS Nano 11 4395Google Scholar

    [43]

    Thomsen P, Roepstorff K, Stahlhut M, van Deurs B, Riezman H 2002 Mol. Biol. Cell 13 238Google Scholar

    [44]

    Schnitzer J E, Oh P, Pinney E, Allard J 1994 J. Cell Biol. 127 1217Google Scholar

    [45]

    Orlandi P A, Fishman P H 1998 J. Cell Biol. 141 905Google Scholar

    [46]

    Nunes-Correia I, Eulalio A, Nir S, De Lima M C P 2004 Cell. Mol. Biol. Lett. 9 47

    [47]

    Mercer J, Helenius A 2009 Nat. Cell Biol. 11 510Google Scholar

    [48]

    de Vries E, Tscherne D M, Wienholts M J, Cobos-Jimenez V, Scholte F, Garcia-Sastre A, Rottier P J, de Haan C A 2011 PLoS Pathog. 7 e1001329Google Scholar

    [49]

    Rossman J S, Leser G P, Lamb R A 2012 J. Virol. 86 10950Google Scholar

    [50]

    Carroll S M, Paulson J C 1985 Virus Res. 3 165Google Scholar

    [51]

    Williams S P, Robertson J S 1993 Virology 196 660Google Scholar

    [52]

    de Vries E, de Vries R P, Wienholts M J, Floris C E, Jacobs M S, van den Heuvel A, Rottier P J, de Haan C A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 7457Google Scholar

    [53]

    Conner S D, Schmid S L 2003 J. Cell Biol. 162 773Google Scholar

    [54]

    Wang G, Jiang L, Wang J, Zhang J, Kong F, Li Q, Yan Y, Huang S, Zhao Y, Liang L, Li J, Sun N, Hu Y, Shi W, Deng G, Chen P, Liu L, Zeng X, Tian G, Bu Z, Chen H, Li C 2020 J. Virol. 94Google Scholar

    [55]

    Chen C, Zhuang X W 2008 Proc. Natl. Acad. Sci. U.S.A. 105 11790Google Scholar

    [56]

    Tayyari F, Marchant D, Moraes T J, Duan W M, Mastrangelo P, Hegele R G 2011 Nat. Med. 17 1132Google Scholar

    [57]

    Melen K, Tynell J, Fagerlund R, Roussel P, Hernandez-Verdun D, Julkunen I 2012 Virol J. 9 167Google Scholar

    [58]

    Murayama R, Harada Y, Shibata T, Kuroda K, Hayakawa S, Shimizu K, Tanaka T 2007 Biochem. Biophys. Res. Commun. 362 880Google Scholar

    [59]

    Chan C M, Chu H, Zhang A J, Leung L H, Sze K H, Kao R Y, Chik K K, To K K, Chan J F, Chen H, Jin D Y, Liu L, Yuen K Y 2016 Virology 494 78Google Scholar

    [60]

    Ji Q J, Yuan B, Lu X M, Yang K, Ma Y Q 2016 Small 12 1140Google Scholar

    [61]

    Geijtenbeek T B H, Gringhuis S I 2009 Nat. Rev. Immunol. 9 465Google Scholar

    [62]

    van Kooyk Y 2008 Biochem. Soc. Trans. 36 1478Google Scholar

    [63]

    Robinson M J, Sancho D, Slack E C, LeibundGut-Landmann S, Sousa C R E 2006 Nat. Immunol. 7 1258Google Scholar

    [64]

    Drickamer K 1992 Nature 360 183Google Scholar

    [65]

    Reading P C, Miller J L, Anders E M 2000 J. Virol. 74 5190Google Scholar

    [66]

    Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S 2000 Immunity 12 71Google Scholar

    [67]

    Cohen G B, Ren R B, Baltimore D 1995 Cell 80 237Google Scholar

    [68]

    Fujioka Y, Tsuda M, Nanbo A, Hattori T, Sasaki J, Sasaki T, Miyazaki T, Ohba Y 2013 Nat Commun 4 2763Google Scholar

    [69]

    Fujioka Y, Nishide S, Ose T, et al. 2018 Cell Host Microbe 23 809Google Scholar

    [70]

    Ehrhardt C, Marjuki H, Wolff T, Nuernberg B, Planz O, Pleschka S, Ludwig S 2006 Cell. Microbiol. 8 1336Google Scholar

    [71]

    Zhu L, Ly H, Liang Y 2014 J. Virol. 88 417Google Scholar

    [72]

    Chu V C, Whittaker G R 2004 Proc. Natl. Acad. Sci. U. S. A. 101 18153Google Scholar

    [73]

    Lu X, Xu P P, Ding H M, Yu Y S, Huo D, Ma Y Q 2019 Nat Commun 10 4520Google Scholar

    [74]

    Hamilton B S, Whittaker G R, Daniel S 2012 Viruses 4 1144Google Scholar

    [75]

    Fodor E 2013 Acta Virol. 57 113Google Scholar

    [76]

    Akarsu H, Burmeister W P, Petosa C, Petit I, Muller C W, Ruigrok R W H, Baudin F 2003 EMBO J. 22 4646Google Scholar

    [77]

    Dou D, Revol R, Ostbye H, Wang H, Daniels R 2018 Front Immunol 9 1581Google Scholar

    [78]

    Zhang J, Pekosz A, Lamb R A 2000 J. Virol. 74 4634Google Scholar

    [79]

    Dahmani I, Ludwig K, Chiantia S 2019 Biosci. Rep. 39 16Google Scholar

    [80]

    Pillay T S 2020 J. Clin. Pathol. 73 366Google Scholar

    [81]

    Han Q, Lin Q, Jin S, You L 2020 J. Infect. 80 373Google Scholar

    [82]

    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G F, Tan W, China Novel Coronavirus I, Research T 2020 N. Engl. J. Med. 382 727Google Scholar

    [83]

    Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu W J, Wang D, Xu W, Holmes E C, Gao G F, Wu G, Chen W, Shi W, Tan W 2020 Lancet 395 565Google Scholar

    [84]

    Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens T S, Herrler G, Wu N H, Nitsche A, Muller M A, Drosten C, Pohlmann S 2020 Cell 181 271Google Scholar

    [85]

    Wang Q, Qiu Y, Li J Y, Zhou Z J, Liao C H, Ge X Y 2020 Virol. Sin. 35 337Google Scholar

    [86]

    Cheng Z, Zhou J, To K K, Chu H, Li C, Wang D, Yang D, Zheng S, Hao K, Bosse Y, Obeidat M, Brandsma C A, Song Y Q, Chen Y, Zheng B J, Li L, Yuen K Y 2015 J. Infect. Dis. 212 1214Google Scholar

    [87]

    Offringa A, Montijn R, Singh S, Paul M, Pinto Y M, Pinto-Sietsma S J 2020 Eur Heart J Cardiovasc Pharmacother pvaa053 doi: 10.1093/ehjcvp/pvaa053

    [88]

    Sohail A, Nutini A 2020 Prog. Biophys. Mol. Biol. 155 29Google Scholar

    [89]

    Ng M L, Tan S H, See E E, Ooi E E, Ling A E 2003 J. Med. Virol. 71 323Google Scholar

    [90]

    Yang Z Y, Huang Y, Ganesh L, Leung K, Kong W P, Schwartz O, Subbarao K, Nabel G J 2004 J. Virol. 78 5642Google Scholar

    [91]

    Huang I C, Bosch B J, Li F, Li W H, Lee K H, Ghiran S, Vasilieva N, Dermody T S, Harrison S C, Dormitzer P R, Farzan M, Rottier P J M, Choe H 2006 J. Biol. Chem. 281 3198Google Scholar

    [92]

    Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T, Sugamura K 2007 J. Virol. 81 8722Google Scholar

    [93]

    Wang H L, Yang P, Liu K T, Guo F, Zhang Y L, Zhang G Y, Jiang C Y 2008 Cell Res. 18 290Google Scholar

    [94]

    Hofmann H, Pohlmann S 2004 Trends Microbiol. 12 466Google Scholar

  • 图 1  流感病毒的结构与形状[17,21] (a) 丝状、杆状与球状流感病毒模型图, 流感病毒是包被病毒, 最外层是脂质膜, 膜上含有HA和NA两种糖蛋白及M2通道蛋白, 膜下是基质蛋白M1, 丝状病毒的基因组位于远端, 球状病毒的基因组位于中心; (b) 丝状病毒和(c) 球状病毒的电子显微镜照片

    Figure 1.  Composition and shape of influenza virus[17,21]: (a) Filamentous, rod-shaped and globular influenza virus models; (b), (c) representative electron microscopy images of filamentous and globular viruses, respectively.

    图 2  流感病毒在细胞表面结合及内化示意图. 流感病毒与细胞表面的糖蛋白或糖脂末端的唾液酸、或者磷酸化的糖蛋白、抑或是C型凝集素Langerin发生结合, 之后在G蛋白偶联受体FFAR2、表达于膜上的核仁蛋白、适配体蛋白Epsin1和EPS15、C型凝集素Langerin等细胞因子的参与下, 通过网格蛋白介导的方式发生内吞. 胞内Ca2+的增加可以促进流感病毒通过网格蛋白或非网格蛋白的方式侵入细胞, 另外膜上脂筏结构也参与病毒的吸附和内化过程

    Figure 2.  Schematic diagram of influenza virus binding and internalization at cellular surface. The influenza virus binds on the cell surface with sialic acid at the end of a glycoprotein or lipid, phosphorylated glycoprotein, or C-type lectin Langerin, and then enters into the cell through clathrin-mediated endocytosis with the participation of cytokines such as G protein coupled receptor FFAR2, nucleolus protein expressed in membrane, adapter proteins Epsin1 and EPS15, or C-type lectin Langerin. An increased amount of intracellular Ca2+ promotes the entry of influenza virus in the clathrin or non-clathrin way. Lipid rafts also play roles in the process of virus adsorption and internalization.

    图 3  SARS-CoV-2的病毒结构[80]及透射电子显微镜图像[82] (a) SARS-CoV-2的结构示意图; (b), (c) SARS-CoV-2在不同放大倍数下的透射电子显微镜图像

    Figure 3.  Structure[80] and transmission electron microscopy images[82] of SARS-CoV-2: (a) Structure of SARS-CoV-2; (b), (c) visualization of SARS-CoV-2 under transmission electron microscope.

    表 1  流感病毒与宿主细胞结合的靶向分子

    Table 1.  Targeting molecules for influenza virus binding to host cells.

    流感病毒作用点宿主细胞结合点阶段文献
    HA唾液酸结合[23]
    HA磷酸化的糖蛋白结合[31]
    HA凝集素结合[32]
    DownLoad: CSV

    表 2  参与流感病毒内化的细胞因子

    Table 2.  Cytokines involved in influenza virus internali-zation.

    细胞因子阶段功能
    N-连接的糖蛋白内化可能存在病毒侵入细胞必要的
    特定碳水化合物构象[72]
    AP2 B1内化与FFAR2, β-arrestin1
    形成信号级联反应[54]
    Epsin 1内化聚集网格蛋白, 启动形成CCPs[55]
    核仁蛋白内化与HA直接结合帮助病毒侵入细胞[59]
    C型凝集素内化骨髓的内吞受体, 将病毒
    转至早期内吞体[32]
    Ca2+内化激活PIP5 K-PLC信号通路
    调节CME和CIE路径[68]
    脂筏内化提供信号平台激活EGFR信号通路[30]
    DownLoad: CSV
  • [1]

    Sieczkarski S B, Whittaker G R 2002 J. Gen. Virol. 83 1535Google Scholar

    [2]

    Nabi I R, Le P U 2003 J. Cell Biol. 161 673Google Scholar

    [3]

    Seto W H, Tsang D, Yung R W H, Ching T Y, Ng T K, Ho M, Ho L M, Peiris J S M, Auth A E S G H 2003 Lancet 361 1519Google Scholar

    [4]

    Wenzel R P, Edmond M B 2009 N. Engl. J. Med. 361 1991Google Scholar

    [5]

    de Groot R J, Baker S C, Baric R S, Brown C S, Drosten C, Enjuanes L, Fouchier R A M, Galiano M, Gorbalenya A E, Memish Z A, Perlman S, Poon L L M, Snijder E J, Stephens G M, Woo P C Y, Zaki A M, Zambon M, Ziebuhr J 2013 J. Virol. 87 7790Google Scholar

    [6]

    Gao R B, Cao B, Hu Y W, et al. 2013 N. Engl. J. Med. 368 1888Google Scholar

    [7]

    Song F X, Shi N N, Shan F, Zhang Z Y, Shen J, Lu H Z, Ling Y, Jiang Y B, Shi Y X 2020 Radiology 295 210Google Scholar

    [8]

    Li M, Ding H M, Lin M H, Yin F F, Song L, Mao X H, Li F, Ge Z L, Wang L H, Zuo X L, Ma Y Q, Fan C H 2019 J. Am. Chem. Soc. 141 18910Google Scholar

    [9]

    Wang H, Jiang C 2009 Sci. China. C Life Sci. 52 464Google Scholar

    [10]

    Lakadamyali M, Rust M J, Babcock H P, Zhuang X 2003 Proc. Natl. Acad. Sci. U. S. A. 100 9280Google Scholar

    [11]

    Fontana J, Steven A C 2013 J. Virol. 87 5621Google Scholar

    [12]

    Liu S L, Zhang Z L, Tian Z Q, Zhao H S, Liu H, Sun E Z, Xiao G F, Zhang W, Wang H Z, Pang D W 2011 ACS Nano 6 141Google Scholar

    [13]

    Babcock H P, Chen C, Zhuang X W 2004 Biophys. J. 87 2749Google Scholar

    [14]

    Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G 2020 Cell Res. 30 269Google Scholar

    [15]

    Lu H 2020 Biosci. Trends 14 69Google Scholar

    [16]

    Li R F, Hou Y L, Huang J C, Pan W Q, Ma Q H, Shi Y X, Li C F, Zhao J, Jia Z H, Jiang H M, Zheng K, Huang S X, Dai J, Li X B, Hou X T, Wang L, Zhong N A, Yang Z F 2020 Pharmacol. Res. 156 104761Google Scholar

    [17]

    Dadonaite B, Vijayakrishnan S, Fodor E, Bhella D, Hutchinson E C 2016 J. Gen. Virol. 97 1755Google Scholar

    [18]

    Mosley V M, Wyckoff R W G 1946 Nature 157 263Google Scholar

    [19]

    Taylor A R, Sharp D G, Beard D, Beard J W, Dingle J H, Feller A E 1943 J. Immunol. 47 261Google Scholar

    [20]

    Sharp D G, Taylor A R, McLean I W, Jr Beard D, Beard J W, Fellew A E, Dingle J H 1943 Science 98 307Google Scholar

    [21]

    Choppin P W, Murphy J S, Tamm I 1960 J. Exp. Med. 112 945Google Scholar

    [22]

    Kilbourne E D, Murphy J S 1960 J. Exp. Med. 111 387Google Scholar

    [23]

    Kumlin U, Olofsson S, Dimock K, Arnberg N 2008 Influenza Other Resp. 2 147Google Scholar

    [24]

    Rogers G N, D'Souza B L 1989 Virology 173 317Google Scholar

    [25]

    Connor R J, Kawaoka Y, Webster R G, Paulson J C 1994 Virology 205 17Google Scholar

    [26]

    Peng W J, de Vries R P, Grant O C, Thompson A J, McBride R, Tsogtbaatar B, Lee P S, Razi N, Wilson I A, Woods R J, Paulson J C 2017 Cell Host Microbe 21 23Google Scholar

    [27]

    Ng W C, Liong S, Tate M D, Irimura T, Denda-Nagai K, Brooks A G, Londrigan S L, Reading P C 2014 J. Virol. 88 1659Google Scholar

    [28]

    Goronzy I N, Rawle R J, Boxer S G, Kasson P M 2018 Chem. Sci. 9 2340Google Scholar

    [29]

    Ding H M, Li J, Chen N, Hu X J, Yang X F, Guo L J, Li Q, Zuo X L, Wang L H, Ma Y Q, Fan C H 2018 Acs Central Sci 4 1344Google Scholar

    [30]

    Verma D K, Gupta D, Lal S K 2018 Viruses 10 650Google Scholar

    [31]

    Byrd-Leotis L, Jia N, Dutta S, Trost J F, Gao C, Cummings S F, Braulke T, Muller-Loennies S, Heimburg-Molinaro J, Steinhauer D A, Cummings R D 2019 Sci. Adv. 5 eaav2554Google Scholar

    [32]

    Ng W C, Londrigan S L, Nasr N, Cunningham A L, Turville S, Brooks A G, Reading P C 2016 J. Virol. 90 206Google Scholar

    [33]

    Oh N, Park J H 2014 Int. J. Nanomed. 9 51Google Scholar

    [34]

    Geiser M 2010 J. Aerosol Med. Pulm. Drug Deliv. 23 207Google Scholar

    [35]

    Dourmashkin R R, Tyrrell D A 1974 J. Gen. Virol. 24 129Google Scholar

    [36]

    Matlin K S, Reggio H, Helenius A, Simons K 1981 J. Cell Biol. 91 601Google Scholar

    [37]

    Conner S D, Schmid S L 2003 Nature 422 37Google Scholar

    [38]

    Nichols B J, Lippincott-Schwartz J 2001 Trends Cell Biol. 11 406Google Scholar

    [39]

    Li Y, Yue T T, Yang K, Zhang X R 2012 Biomaterials 33 4965Google Scholar

    [40]

    Rust M J, Lakadamyali M, Zhang F, Zhuang X W 2004 Nat. Struct. Mol. Biol. 11 567Google Scholar

    [41]

    Sieczkarski S B, Whittaker G R 2002 J. Virol. 76 10455Google Scholar

    [42]

    Sun E Z, Liu A A, Zhang Z L, Liu S L, Tian Z Q, Pang D W 2017 ACS Nano 11 4395Google Scholar

    [43]

    Thomsen P, Roepstorff K, Stahlhut M, van Deurs B, Riezman H 2002 Mol. Biol. Cell 13 238Google Scholar

    [44]

    Schnitzer J E, Oh P, Pinney E, Allard J 1994 J. Cell Biol. 127 1217Google Scholar

    [45]

    Orlandi P A, Fishman P H 1998 J. Cell Biol. 141 905Google Scholar

    [46]

    Nunes-Correia I, Eulalio A, Nir S, De Lima M C P 2004 Cell. Mol. Biol. Lett. 9 47

    [47]

    Mercer J, Helenius A 2009 Nat. Cell Biol. 11 510Google Scholar

    [48]

    de Vries E, Tscherne D M, Wienholts M J, Cobos-Jimenez V, Scholte F, Garcia-Sastre A, Rottier P J, de Haan C A 2011 PLoS Pathog. 7 e1001329Google Scholar

    [49]

    Rossman J S, Leser G P, Lamb R A 2012 J. Virol. 86 10950Google Scholar

    [50]

    Carroll S M, Paulson J C 1985 Virus Res. 3 165Google Scholar

    [51]

    Williams S P, Robertson J S 1993 Virology 196 660Google Scholar

    [52]

    de Vries E, de Vries R P, Wienholts M J, Floris C E, Jacobs M S, van den Heuvel A, Rottier P J, de Haan C A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 7457Google Scholar

    [53]

    Conner S D, Schmid S L 2003 J. Cell Biol. 162 773Google Scholar

    [54]

    Wang G, Jiang L, Wang J, Zhang J, Kong F, Li Q, Yan Y, Huang S, Zhao Y, Liang L, Li J, Sun N, Hu Y, Shi W, Deng G, Chen P, Liu L, Zeng X, Tian G, Bu Z, Chen H, Li C 2020 J. Virol. 94Google Scholar

    [55]

    Chen C, Zhuang X W 2008 Proc. Natl. Acad. Sci. U.S.A. 105 11790Google Scholar

    [56]

    Tayyari F, Marchant D, Moraes T J, Duan W M, Mastrangelo P, Hegele R G 2011 Nat. Med. 17 1132Google Scholar

    [57]

    Melen K, Tynell J, Fagerlund R, Roussel P, Hernandez-Verdun D, Julkunen I 2012 Virol J. 9 167Google Scholar

    [58]

    Murayama R, Harada Y, Shibata T, Kuroda K, Hayakawa S, Shimizu K, Tanaka T 2007 Biochem. Biophys. Res. Commun. 362 880Google Scholar

    [59]

    Chan C M, Chu H, Zhang A J, Leung L H, Sze K H, Kao R Y, Chik K K, To K K, Chan J F, Chen H, Jin D Y, Liu L, Yuen K Y 2016 Virology 494 78Google Scholar

    [60]

    Ji Q J, Yuan B, Lu X M, Yang K, Ma Y Q 2016 Small 12 1140Google Scholar

    [61]

    Geijtenbeek T B H, Gringhuis S I 2009 Nat. Rev. Immunol. 9 465Google Scholar

    [62]

    van Kooyk Y 2008 Biochem. Soc. Trans. 36 1478Google Scholar

    [63]

    Robinson M J, Sancho D, Slack E C, LeibundGut-Landmann S, Sousa C R E 2006 Nat. Immunol. 7 1258Google Scholar

    [64]

    Drickamer K 1992 Nature 360 183Google Scholar

    [65]

    Reading P C, Miller J L, Anders E M 2000 J. Virol. 74 5190Google Scholar

    [66]

    Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, Duvert-Frances V, Vincent C, Schmitt D, Davoust J, Caux C, Lebecque S, Saeland S 2000 Immunity 12 71Google Scholar

    [67]

    Cohen G B, Ren R B, Baltimore D 1995 Cell 80 237Google Scholar

    [68]

    Fujioka Y, Tsuda M, Nanbo A, Hattori T, Sasaki J, Sasaki T, Miyazaki T, Ohba Y 2013 Nat Commun 4 2763Google Scholar

    [69]

    Fujioka Y, Nishide S, Ose T, et al. 2018 Cell Host Microbe 23 809Google Scholar

    [70]

    Ehrhardt C, Marjuki H, Wolff T, Nuernberg B, Planz O, Pleschka S, Ludwig S 2006 Cell. Microbiol. 8 1336Google Scholar

    [71]

    Zhu L, Ly H, Liang Y 2014 J. Virol. 88 417Google Scholar

    [72]

    Chu V C, Whittaker G R 2004 Proc. Natl. Acad. Sci. U. S. A. 101 18153Google Scholar

    [73]

    Lu X, Xu P P, Ding H M, Yu Y S, Huo D, Ma Y Q 2019 Nat Commun 10 4520Google Scholar

    [74]

    Hamilton B S, Whittaker G R, Daniel S 2012 Viruses 4 1144Google Scholar

    [75]

    Fodor E 2013 Acta Virol. 57 113Google Scholar

    [76]

    Akarsu H, Burmeister W P, Petosa C, Petit I, Muller C W, Ruigrok R W H, Baudin F 2003 EMBO J. 22 4646Google Scholar

    [77]

    Dou D, Revol R, Ostbye H, Wang H, Daniels R 2018 Front Immunol 9 1581Google Scholar

    [78]

    Zhang J, Pekosz A, Lamb R A 2000 J. Virol. 74 4634Google Scholar

    [79]

    Dahmani I, Ludwig K, Chiantia S 2019 Biosci. Rep. 39 16Google Scholar

    [80]

    Pillay T S 2020 J. Clin. Pathol. 73 366Google Scholar

    [81]

    Han Q, Lin Q, Jin S, You L 2020 J. Infect. 80 373Google Scholar

    [82]

    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G F, Tan W, China Novel Coronavirus I, Research T 2020 N. Engl. J. Med. 382 727Google Scholar

    [83]

    Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu W J, Wang D, Xu W, Holmes E C, Gao G F, Wu G, Chen W, Shi W, Tan W 2020 Lancet 395 565Google Scholar

    [84]

    Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens T S, Herrler G, Wu N H, Nitsche A, Muller M A, Drosten C, Pohlmann S 2020 Cell 181 271Google Scholar

    [85]

    Wang Q, Qiu Y, Li J Y, Zhou Z J, Liao C H, Ge X Y 2020 Virol. Sin. 35 337Google Scholar

    [86]

    Cheng Z, Zhou J, To K K, Chu H, Li C, Wang D, Yang D, Zheng S, Hao K, Bosse Y, Obeidat M, Brandsma C A, Song Y Q, Chen Y, Zheng B J, Li L, Yuen K Y 2015 J. Infect. Dis. 212 1214Google Scholar

    [87]

    Offringa A, Montijn R, Singh S, Paul M, Pinto Y M, Pinto-Sietsma S J 2020 Eur Heart J Cardiovasc Pharmacother pvaa053 doi: 10.1093/ehjcvp/pvaa053

    [88]

    Sohail A, Nutini A 2020 Prog. Biophys. Mol. Biol. 155 29Google Scholar

    [89]

    Ng M L, Tan S H, See E E, Ooi E E, Ling A E 2003 J. Med. Virol. 71 323Google Scholar

    [90]

    Yang Z Y, Huang Y, Ganesh L, Leung K, Kong W P, Schwartz O, Subbarao K, Nabel G J 2004 J. Virol. 78 5642Google Scholar

    [91]

    Huang I C, Bosch B J, Li F, Li W H, Lee K H, Ghiran S, Vasilieva N, Dermody T S, Harrison S C, Dormitzer P R, Farzan M, Rottier P J M, Choe H 2006 J. Biol. Chem. 281 3198Google Scholar

    [92]

    Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T, Sugamura K 2007 J. Virol. 81 8722Google Scholar

    [93]

    Wang H L, Yang P, Liu K T, Guo F, Zhang Y L, Zhang G Y, Jiang C Y 2008 Cell Res. 18 290Google Scholar

    [94]

    Hofmann H, Pohlmann S 2004 Trends Microbiol. 12 466Google Scholar

  • [1] Cao Wen-Jing, Liu Xiao-Fei, Han Zhuo, Feng Xin, Zhang Lin, Liu Xiao-Fan, Xu Xiao-Ke, Wu Ye. Statistical analysis and autoregressive modeling of confirmed coronavirus disease 2019 epidemic cases. Acta Physica Sinica, 2020, 69(9): 090203. doi: 10.7498/aps.69.20200503
    [2] Li Ying-Ke, Zhao Shi, Lou Yi-Jun, Gao Dao-Zhou, Yang Lin, He Dai-Hai. Epidemiological parameters and models of coronavirus disease 2019. Acta Physica Sinica, 2020, 69(9): 090202. doi: 10.7498/aps.69.20200389
    [3] Wang Cong, Yan Jie, Wang Xu, Li Min. Analysis on early spatiotemporal transmission characteristics of COVID-19. Acta Physica Sinica, 2020, 69(8): 080701. doi: 10.7498/aps.69.20200285
    [4] Li Ji-Peng, Hong Feng, Bai Wei, Liao Jing-Yi, Zhang Yan-Ru, Zhou Tao. Approximate method to evaluate the regional control efficacy of COVID-19. Acta Physica Sinica, 2020, 69(10): 100201. doi: 10.7498/aps.69.20200441
    [5] Lu Yan-Ling, Jiang Guo-Ping, Song Yu-Rong. Stability and bifurcation of epidemic spreading on adaptive network. Acta Physica Sinica, 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [6] Deng Qi-Xiang, Jia Zhen, Xie Meng-Shu, Chen Yan-Fei. Study of directed networks-based Email virus propagation model and its concussion attractor. Acta Physica Sinica, 2013, 62(2): 020203. doi: 10.7498/aps.62.020203
    [7] Hu Heng-Kai, Wang Kai, Yang Guang, Liu Qian, Pei Wen-Jiang, Qiu Shen-Wei, Wei Cheng-Jian, Zhang Yi-Feng. Dynamical patterns of epidemic outbreaks on scale-free networks with traffic flow. Acta Physica Sinica, 2012, 61(20): 200209. doi: 10.7498/aps.61.200209
    [8] Gong Yong-Wang, Song Yu-Rong, Jiang Guo-Ping. Epidemic spreading model and stability of the networks in mobile environment. Acta Physica Sinica, 2012, 61(11): 110205. doi: 10.7498/aps.61.110205
    [9] Qiu Shen-Wei, Wang Kai, Liu Qian, Pei Wen-Jiang, Hu Hen-Kai, Yang Guang, Wei Cheng-Jian, Zhang Yi-Feng. Epidemic spreading on scale-free networks with traffic flow. Acta Physica Sinica, 2012, 61(15): 150201. doi: 10.7498/aps.61.150201
    [10] Li Hui, Duan Zhao-Wen, Dou Shuo-Xing, Wang Peng-Ye. The study of EGFR transport in single cell using an automatic method of trajectory identification. Acta Physica Sinica, 2012, 61(6): 068701. doi: 10.7498/aps.61.068701
    [11] Wang Ya-Qi, Jiang Guo-Ping. Epidemic spreading in complex networks with spreading delay based on cellular automata. Acta Physica Sinica, 2011, 60(8): 080510. doi: 10.7498/aps.60.080510
    [12] Wang Ya-Qi, Jiang Guo-Ping. Epidemic immunization on scale-free networks with traffic flow. Acta Physica Sinica, 2011, 60(6): 060202. doi: 10.7498/aps.60.060202
    [13] Song Yu-Rong, Jiang Guo-Ping, Xu Jia-Gang. An epidemic spreading model in adaptive networks based on cellular automata. Acta Physica Sinica, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [14] Liu Juan, Gao Jie. Long-memory ARFIMA model for DNA sequences of influenza A virus. Acta Physica Sinica, 2011, 60(4): 048702. doi: 10.7498/aps.60.048702
    [15] Song Yu-Rong, Jiang Guo-Ping. Epidemic-spreading model for networks with different anti-attack abilities of nodes and nonuniform transmission of edges. Acta Physica Sinica, 2010, 59(11): 7546-7551. doi: 10.7498/aps.59.7546
    [16] Wang Ya-Qi, Jiang Guo-Ping. Virus spreading on complex networks with imperfect immunization. Acta Physica Sinica, 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [17] Wang Ya-Qi, Jiang Guo-Ping. Spreading of epidemics in complex networks with infective medium and spreading delay. Acta Physica Sinica, 2010, 59(10): 6725-6733. doi: 10.7498/aps.59.6725
    [18] Pei Wei-Dong, Liu Zhong-Xin, Chen Zeng-Qiang, Yuan Zhu-Zhi. Study of epidemic spreading on scale-free networks with finite maximum dissemination. Acta Physica Sinica, 2008, 57(11): 6777-6785. doi: 10.7498/aps.57.6777
    [19] Xu Dan, Li Xiang, Wang Xiao-Fan. An investigation on local area control of virus spreading in complex networks. Acta Physica Sinica, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [20] Bai Yong-Qiang, Tang Ai-Hui, Wang Shi-Qiang, Zhu Xing. Micro-dynamics of Ca2+ signals in single heart cells. Acta Physica Sinica, 2007, 56(6): 3607-3612. doi: 10.7498/aps.56.3607
Metrics
  • Abstract views:  19258
  • PDF Downloads:  309
  • Cited By: 0
Publishing process
  • Received Date:  21 July 2020
  • Accepted Date:  30 July 2020
  • Available Online:  12 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回