Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Underwater ranging with intensity modulated 532 nm laser source

Li Kun Yang Su-Hui Liao Ying-Qi Lin Xue-Tong Wang Xin Zhang Jin-Ying Li Zhuo

Citation:

Underwater ranging with intensity modulated 532 nm laser source

Li Kun, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong, Wang Xin, Zhang Jin-Ying, Li Zhuo
PDF
HTML
Get Citation
  • Laser underwater detection has important applications in underwater target search, resource exploration, and other fields. The absorption and scattering of light by water are a big challenge to underwater detection. Absorption causes the laser signal to attenuate, thus limiting the detection distance. Scattering causes not only attenuation but also noise, the strong scattering noise can even submerge the target information. To reduce the absorption, the blue-green light band in the transmission window of water is chosen for lidar. Optically carried microwave radar (OCMR) has the advantages of resistance to turbulence and scattering. The intensity of the detection beam is modulated at radio frequency. The photons reflected by the target retain the intensity modulation information, while interference phase-out is generated between photons scattered by particles suspending in turbid water at different distances, resulting in the average of high-frequency modulation signals. The signal-to-noise ratio is improved when the received signal by the detector is correlated with the modulation signal. High-power broadband intensity modulated light source is the key to achieving the long-distance, high-precision underwater ranging with the carrier modulation method. However, the carrier modulation technology for underwater detection is limited by the development of light source. The maximum power of intensity modulation green light used in underwater detection is on the order of hundreds of milliwatts, the receiver needs to adopt a photomultiplier tube (PMT).In this paper, a laser underwater detection system is built with a 3-m-long water tank by using a home-made 532 nm light source. The maximum output power of the intensity-modulated 532 nm laser is 2.56 W. The modulation frequency is turned from 10 MHz to 2.1 GHz. Water with different attenuation coefficients is obtained by adding Mg(OH)2 into the water tank. When the maximum modulation frequency is 500 MHz by phase ranging, 4.3 attenuation lengths(a.l.) are measured. The ranging error is about 12 cm. In the future study, a PMT will be used as the detector to increase the range resolution. We will also increase the bandwidth of the signal processing unit in order to take full advantage of the broadband intensity to modulate light source.
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61835001, 61875011)
    [1]

    Jaffe J S 2015 IEEE J. Oceanic Eng. 40 683Google Scholar

    [2]

    Busck J 2005 Opt. Eng. 44 16001Google Scholar

    [3]

    Austin J, William J, Alan L, Linda M, Brandon C 2018 Opt. Express 26 2668Google Scholar

    [4]

    Laux A, Mullen L, Perez P, Zege E 2012 Proceedings of SPIE on Ocean Sensing and Monitoring Baltimore, USA, April 23, 2012 p8372

    [5]

    Haltrin V I 1998 Appl. Opt. 37 3773Google Scholar

    [6]

    Duntley S Q 1963 J. Opt. Soc. Am. 53 214Google Scholar

    [7]

    Mullen L J, Contarino V M 2002 IEEE Microwave Mag. 1 42

    [8]

    Illig D W, Rumbaugh L, Jemison W D, Alan L, Linda M 2014 Proceedings of IEEE International Conference on Oceans IV St. John's, Canada, September 14–19, 2014 p7003086

    [9]

    O'Connor S, Lee R, Mullen L, Cochenour B 2014 Proceedings of SPIE on ocean Sensing and Monitoring VI Baltimore, USA, May 6–7, 2014 p91110P

    [10]

    Illig D W, Laux A, Lee R W, Jemison W D, Mullen L J 2015 Proceedings of SPIE on Ocean Sensing and Monitoring VII Baltimore, USA, April 20–24, 2015 p94590B

    [11]

    张洪敏, 荣健, 李涛, 田磊, 汤林, 梁国栋 2011 红外与激光工程 40 2408Google Scholar

    Zhang H M, Rong J, Li T, Tian L, Tang L, Liang G D 2011 Infrared Laser Eng. 40 2408Google Scholar

    [12]

    Illig D W, Jemison W D, Lee R W, Lauxb A, Mullenet L 2014 Proceedings of SPIE on ocean Sensing and Monitoring VI Baltimore, USA, May 6–7, 2014 p91110R

    [13]

    张明涛, 张建忠, 张建国, 徐航, 张明江, 王安帮, 王云才 2016 激光与光电子学进展 53 051402Google Scholar

    Zhang M T, Zhang J Z, Zhang J G, Xu H, Zhang M J, Wang A B, Wang Y C 2016 Laser Optoelect. Prog. 53 051402Google Scholar

    [14]

    沈振民, 尚卫东, 王冰洁, 赵彤, 张海洋, 郑永超, 周国清 2020 光子学报 49 0601001Google Scholar

    Shen Z M, Shang W D, Wang B J, Zhao T, Zhang H Y, Zheng Y C, Zhou G Y 2020 Acta Photonica Sin. 49 0601001Google Scholar

    [15]

    戴永江 2010 激光雷达技术 (下册) (北京: 电子工业出版社) 第586—588页

    Dai Y J 2010 Lidar Technology (Vol. 2) (Beijing: Electronic Industry Press) pp586–588 (in Chinese)

    [16]

    宋宏, 张云菲, 吴超鹏, 申屠溢醇, 吴超钒, 郭乙陆, 黄慧, 司玉林, 杨萍, 全向前 2019 红外与激光工程 48 0406008Google Scholar

    Song H, Zhang Y F, Wu C P, S Y C, Wu C F, Guo Y L, Huang H, Si Y L, Yang P, Quan X Q 2019 Infrared Laser Eng. 48 0406008Google Scholar

    [17]

    刘邈, 杨学友, 刘常杰 2012 中国激光 39 0208004Google Scholar

    Liu M, Yang X Y, Liu C J 2012 Chin. J. Las. 39 0208004Google Scholar

    [18]

    姜成昊, 杨进华, 张丽娟, 王晓坤 2014 光子学报 43 0912006Google Scholar

    Jiang C H, Yang J H, Zhang L J, Wang X K 2014 Acta Photonica Sin. 43 0912006Google Scholar

    [19]

    Shangguan M J, Xia H Y, Wang C, Qiu J W, Lin S F, Dou X K, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541Google Scholar

    [20]

    章正宇, 眭晓林 2002 中国激光 29 661Google Scholar

    Zhang Z Y, Sui X L 2002 Chin. J. Las. 29 661Google Scholar

    [21]

    刘颖, 吕彦东, 孙志成, 张娜 付庆勇 2019 遥测遥控 40 56Google Scholar

    Liu Y, Lv Y D, Sun Z C, Zhang N, Fu Q Y 2019 J. Telemetry Tracking Command 40 56Google Scholar

  • 图 1  激光水下探测系统

    Figure 1.  Experimental setup of underwater ranging.

    图 2  回波信号和参考信号的波形及相关运算结果 (a), (c) 0和0.5 m处的波形; (b), (d) 0和0.5 m处的相关结果

    Figure 2.  Waveform of echo signal and reference signal, results of correlation calculation: (a), (c) Waveform at 0 and 0.5 m; (b), (d) results of correlation calculation at 0 and 0.5 m.

    图 3  不同距离的测距结果及误差(c = 0.99 m–1) (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m; (e) 2.5 m; (f) 测距误差

    Figure 3.  Ranging results and errors at different distances (c = 0.99 m–1): (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m; (e) 2.5 m; (f) ranging error.

    图 4  不同距离的测距结果及误差 (c = 1.72 m–1) (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m; (e) 2.5 m; (f) 测距误差

    Figure 4.  Ranging results and errors at different distances (c = 1.72 m–1): (a) 0.5 m; (b) 1.0 m; (c) 1.5 m; (d) 2.0 m; (e) 2.5 m; (f) ranging error.

    图 5  相位法测距结果

    Figure 5.  Ranging results based on phase.

    表 1  不同水体的衰减系数

    Table 1.  Attenuation coefficient of different water.

    样本目标距
    离/m
    回波信号
    强度/mW
    衰减系
    数/m–1
    平均衰减
    系数/m–1
    101600.99
    0.50600.98
    1.00220.99
    1.5081.00
    202611.72
    0.50471.71
    0.80171.71
    1.0081.74
    302162.97
    0.20682.89
    0.30353.03
    0.50112.98
    402304.03
    0.20473.97
    0.25304.07
    0.4094.05
    DownLoad: CSV
  • [1]

    Jaffe J S 2015 IEEE J. Oceanic Eng. 40 683Google Scholar

    [2]

    Busck J 2005 Opt. Eng. 44 16001Google Scholar

    [3]

    Austin J, William J, Alan L, Linda M, Brandon C 2018 Opt. Express 26 2668Google Scholar

    [4]

    Laux A, Mullen L, Perez P, Zege E 2012 Proceedings of SPIE on Ocean Sensing and Monitoring Baltimore, USA, April 23, 2012 p8372

    [5]

    Haltrin V I 1998 Appl. Opt. 37 3773Google Scholar

    [6]

    Duntley S Q 1963 J. Opt. Soc. Am. 53 214Google Scholar

    [7]

    Mullen L J, Contarino V M 2002 IEEE Microwave Mag. 1 42

    [8]

    Illig D W, Rumbaugh L, Jemison W D, Alan L, Linda M 2014 Proceedings of IEEE International Conference on Oceans IV St. John's, Canada, September 14–19, 2014 p7003086

    [9]

    O'Connor S, Lee R, Mullen L, Cochenour B 2014 Proceedings of SPIE on ocean Sensing and Monitoring VI Baltimore, USA, May 6–7, 2014 p91110P

    [10]

    Illig D W, Laux A, Lee R W, Jemison W D, Mullen L J 2015 Proceedings of SPIE on Ocean Sensing and Monitoring VII Baltimore, USA, April 20–24, 2015 p94590B

    [11]

    张洪敏, 荣健, 李涛, 田磊, 汤林, 梁国栋 2011 红外与激光工程 40 2408Google Scholar

    Zhang H M, Rong J, Li T, Tian L, Tang L, Liang G D 2011 Infrared Laser Eng. 40 2408Google Scholar

    [12]

    Illig D W, Jemison W D, Lee R W, Lauxb A, Mullenet L 2014 Proceedings of SPIE on ocean Sensing and Monitoring VI Baltimore, USA, May 6–7, 2014 p91110R

    [13]

    张明涛, 张建忠, 张建国, 徐航, 张明江, 王安帮, 王云才 2016 激光与光电子学进展 53 051402Google Scholar

    Zhang M T, Zhang J Z, Zhang J G, Xu H, Zhang M J, Wang A B, Wang Y C 2016 Laser Optoelect. Prog. 53 051402Google Scholar

    [14]

    沈振民, 尚卫东, 王冰洁, 赵彤, 张海洋, 郑永超, 周国清 2020 光子学报 49 0601001Google Scholar

    Shen Z M, Shang W D, Wang B J, Zhao T, Zhang H Y, Zheng Y C, Zhou G Y 2020 Acta Photonica Sin. 49 0601001Google Scholar

    [15]

    戴永江 2010 激光雷达技术 (下册) (北京: 电子工业出版社) 第586—588页

    Dai Y J 2010 Lidar Technology (Vol. 2) (Beijing: Electronic Industry Press) pp586–588 (in Chinese)

    [16]

    宋宏, 张云菲, 吴超鹏, 申屠溢醇, 吴超钒, 郭乙陆, 黄慧, 司玉林, 杨萍, 全向前 2019 红外与激光工程 48 0406008Google Scholar

    Song H, Zhang Y F, Wu C P, S Y C, Wu C F, Guo Y L, Huang H, Si Y L, Yang P, Quan X Q 2019 Infrared Laser Eng. 48 0406008Google Scholar

    [17]

    刘邈, 杨学友, 刘常杰 2012 中国激光 39 0208004Google Scholar

    Liu M, Yang X Y, Liu C J 2012 Chin. J. Las. 39 0208004Google Scholar

    [18]

    姜成昊, 杨进华, 张丽娟, 王晓坤 2014 光子学报 43 0912006Google Scholar

    Jiang C H, Yang J H, Zhang L J, Wang X K 2014 Acta Photonica Sin. 43 0912006Google Scholar

    [19]

    Shangguan M J, Xia H Y, Wang C, Qiu J W, Lin S F, Dou X K, Zhang Q, Pan J W 2017 Opt. Lett. 42 3541Google Scholar

    [20]

    章正宇, 眭晓林 2002 中国激光 29 661Google Scholar

    Zhang Z Y, Sui X L 2002 Chin. J. Las. 29 661Google Scholar

    [21]

    刘颖, 吕彦东, 孙志成, 张娜 付庆勇 2019 遥测遥控 40 56Google Scholar

    Liu Y, Lv Y D, Sun Z C, Zhang N, Fu Q Y 2019 J. Telemetry Tracking Command 40 56Google Scholar

  • [1] Zhao Xin-Wei, Lü Jun-Peng, Ni Zhen-Hua. Lead halide perovskites Fabry-Pérot resonant cavity laser. Acta Physica Sinica, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [2] Liu Xin-Yu, Yang Su-Hui, Liao Ying-Qi, Lin Xue-Tong. Laser underwater ranging based on wavelet transform. Acta Physica Sinica, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [3] Sun Wei, An Wei-Ming, Zhong Jia-Yong. Two-dimensional numerical study of effect of magnetic field on laser-driven Kelvin-Helmholtz instability. Acta Physica Sinica, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [4] Yan Chun-Hui, Wang Ting-Feng, Zhang He-Yong, Lü Tao, Wu Shi-Song. Short-range optical limited displacement resolution in laser heterodyne detection system. Acta Physica Sinica, 2017, 66(23): 234208. doi: 10.7498/aps.66.234208
    [5] Zhang Yong-Yan, Wu Jiu-Hui, Zeng Tao, Zhong Hong-Min. Mechanism of eliminating the aerosol haze particles by using laser gradient force. Acta Physica Sinica, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [6] Li Cheng-Qiang, Wang Ting-Feng, Zhang He-Yong, Xie Jing-Jiang, Liu Li-Sheng, Guo Jin. Effect of laser linewidth on the performance of heterodyne detection. Acta Physica Sinica, 2016, 65(8): 084206. doi: 10.7498/aps.65.084206
    [7] Han Xiang-Lin, Zhao Zhen-Jiang, Cheng Rong-Jun, Mo Jia-Qi. Solution of the transfer models of femtosecond pulse laser for nano metal film. Acta Physica Sinica, 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [8] Sun Bing-Bing, Wu Bo, Wang Hui, Huang Zhi-Xiang, Wu Xian-Liang. Analysis of lasing in gain medium based on four-energy level atomic model. Acta Physica Sinica, 2012, 61(22): 220206. doi: 10.7498/aps.61.220206
    [9] Liu Yu, Zeng Liao-Liao, Lu Yong-Le, Liu Shen, Huang Zhao-Jing. Intensity-modulated bending sensors based on rare-earth-doped fibers. Acta Physica Sinica, 2011, 60(10): 104218. doi: 10.7498/aps.60.104218
    [10] Zhang Yong-Kang, Yu Shui-Sheng, Yao Hong-Bing, Wang Fei, Ren Ai-Guo, Pei Xu. Experimental study of shock waves induced by high-power pulsed laser in AZ31B magnesium alloy. Acta Physica Sinica, 2010, 59(8): 5602-5605. doi: 10.7498/aps.59.5602
    [11] Huang Xiao-Dong, Zhang Xiao-Min, Wang Jian-Jun, Xu Dang-Peng, Zhang Rui, Lin Hong-Huan, Deng Ying, Geng Yuan-Chao, Yu Xiao-Qiu. The effect of dispersion on FM-AM coversion in high power laser front end. Acta Physica Sinica, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [12] Zhang Hong-Ying, Wu Shi-Gang. The dynamic process of thin films damage induced by femtosecond laser. Acta Physica Sinica, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [13] Gu Yong-Yu, Zhang Yong-Kang, Zhang Xing-Quan, Shi Jian-Guo. Theoretical study on the influence of the overlay on the pressure of laser shock wave in photomechanics. Acta Physica Sinica, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [14] Xia Zhi-Lin, Fan Zheng-Xiu, Shao Jian-Da. Electrons-phonons collision velocity in films radiated by laser. Acta Physica Sinica, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [15] Mo Jia-Qi, Zhang Wei-Jiang, He Ming. Calculation of the transmission wave of a laser pulse amplifier. Acta Physica Sinica, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [16] Chen Sui-Yuan, Liu Chang-Sheng, Li Hui-Li, Cui Tong. Hyperfine stucture during nanocrystallization of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy irradiated by laser. Acta Physica Sinica, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [17] Shi Chun-Hua, Qiu Xi-Jun, An Wei-Ke, Li Ru-Xin. Influence of intense pulse laser on penetron-atomic ionization in muon-catalysed fusion. Acta Physica Sinica, 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [18] Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong. Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [19] Li Kun, Zhang Jie, Yu We. High-order harmonic generation by laser interaction with solid target using movi ng mirror model. Acta Physica Sinica, 2003, 52(6): 1412-1417. doi: 10.7498/aps.52.1412
    [20] LIN XIU-CHUAN, SHAO TIAN-MIN. LUMPED METHOD FOR THE MEASUREMENT OF LASER ABSORPTANCE OF MATERIALS . Acta Physica Sinica, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
Metrics
  • Abstract views:  9537
  • PDF Downloads:  229
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2020
  • Accepted Date:  10 November 2020
  • Available Online:  02 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回