搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于四能级原子系统模型增益媒质激光原理研究

孙兵兵 吴博 王辉 黄志祥 吴先良

引用本文:
Citation:

基于四能级原子系统模型增益媒质激光原理研究

孙兵兵, 吴博, 王辉, 黄志祥, 吴先良

Analysis of lasing in gain medium based on four-energy level atomic model

Sun Bing-Bing, Wu Bo, Wang Hui, Huang Zhi-Xiang, Wu Xian-Liang
PDF
导出引用
  • 作为超材料研究中的重点, 增益媒质因其放大特性而表现出良好的应用前景.本文基于四能级原子结构系统模型, 引入一种全新的抽运机理:高斯抽运. 用时域有限差分方法对增益媒质激光产生原理进行模拟计算. 数值模拟结果表明, 该模型和新抽运机理的频谱特性、阈值特性以及动态演化过程和理论分析一致. 研究结果可为计算更复杂超材料系统提供参考.
    With the present interest in metamaterial, gain medium shows promise for complex system due to their amplification effect and wide potential application area. In this paper we present a model that simulates lasing in gain medium by using a model of four-energy level atomic system based on the finite-difference time-domain method.Meanwhile we propose a new pump mechanism, i.e., Gaussian Pump. It is found that results of the spectra, lasing threshold and population dynamics of the new pump mechanism are in good agreement with theoretical results. The results can also provide reference for caculating more complex metamaterial system.
    • 基金项目: 国家自然科学基金(批准号: 60931002, 61101064, 51277001)、安徽省杰出自然科学基金(批准号: 1108085J01)、安徽省高校自然科学基金(批准号: KJ2011A002, KJ2011A242) 和安徽大学211工程资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60931002, 61101064, 51277001), the Distinguished Natural Science Foundation (Grant No. 1108085J01), the Universities Natural Science Foundation of Anhui Province (Grant Nos. KJ2011A002, KJ2011A242), and Financed by the 211 Project of Anhui University.
    [1]

    Siegman A E 1986 Laser (California: Mill Valley)

    [2]

    Sargent III M, Scully M O, Lamb W E 1974 Laser Physics (Mass: Addison-Wesly Reading)

    [3]

    Yariv A 1997 Optical Electronics in Morden Communications (New York: Oxford Univ Press)

    [4]

    Einstein A 1917 Phys. Z. 18 121

    [5]

    Lamb W E 1964 Phys. Rev. A 134 1429

    [6]

    Marcuse D 1980 Principles of Quantum Electronics (New York: Academic Press)

    [7]

    Xiao S M, Drachev V P, Kildishev A V, Ni X J, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [8]

    Fang A, Koschny T, Wegener M, Soukoulis C M 2009 Phys. Rev. B 78 241104

    [9]

    Sivan Y, Xiao S M, Chettiar U K, Kildishev A V, Shalaev V M 2010 Optics Express 17 24060

    [10]

    Fang A, Koschny T, Soukoulis C M 2010 Phys. Rev. B 82 121102

    [11]

    Wuestner S, Pusch A, Tsakmakidis K L, Hamm J M, Hess O 2010 Phys. Rev. Lett. 105 127401

    [12]

    Fang A, Huang Z X, Koschny T, Soukoulis C M 2012 Photonics and Nanostructures-Fundementals and Applications 10 276

    [13]

    Fang A, Huang Z X, Koschny T, Soukoulis C M 2012 Optics Express 19 12688

    [14]

    Hawkins R J, Kallman J S 1994 Opt Quantum Electron 26 207

    [15]

    Hagness S C, Joseph R M, Taflove A 1996 Radio Sci 31 931

    [16]

    Nagra A S, York R A 1998 IEEE Transaction on Antennas and propagation 46 334

    [17]

    Fang A, Koschny T, Soukoulis C M 2010 Journal of Optics 12 024013

    [18]

    Florescu L, Busch K, John S 2002 Optical B 19 2215

    [19]

    Taflove A 1995 Computational Electrodynamics: The Finite Difference Time Domain Method (Norwood, MA: Artech House)

  • [1]

    Siegman A E 1986 Laser (California: Mill Valley)

    [2]

    Sargent III M, Scully M O, Lamb W E 1974 Laser Physics (Mass: Addison-Wesly Reading)

    [3]

    Yariv A 1997 Optical Electronics in Morden Communications (New York: Oxford Univ Press)

    [4]

    Einstein A 1917 Phys. Z. 18 121

    [5]

    Lamb W E 1964 Phys. Rev. A 134 1429

    [6]

    Marcuse D 1980 Principles of Quantum Electronics (New York: Academic Press)

    [7]

    Xiao S M, Drachev V P, Kildishev A V, Ni X J, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [8]

    Fang A, Koschny T, Wegener M, Soukoulis C M 2009 Phys. Rev. B 78 241104

    [9]

    Sivan Y, Xiao S M, Chettiar U K, Kildishev A V, Shalaev V M 2010 Optics Express 17 24060

    [10]

    Fang A, Koschny T, Soukoulis C M 2010 Phys. Rev. B 82 121102

    [11]

    Wuestner S, Pusch A, Tsakmakidis K L, Hamm J M, Hess O 2010 Phys. Rev. Lett. 105 127401

    [12]

    Fang A, Huang Z X, Koschny T, Soukoulis C M 2012 Photonics and Nanostructures-Fundementals and Applications 10 276

    [13]

    Fang A, Huang Z X, Koschny T, Soukoulis C M 2012 Optics Express 19 12688

    [14]

    Hawkins R J, Kallman J S 1994 Opt Quantum Electron 26 207

    [15]

    Hagness S C, Joseph R M, Taflove A 1996 Radio Sci 31 931

    [16]

    Nagra A S, York R A 1998 IEEE Transaction on Antennas and propagation 46 334

    [17]

    Fang A, Koschny T, Soukoulis C M 2010 Journal of Optics 12 024013

    [18]

    Florescu L, Busch K, John S 2002 Optical B 19 2215

    [19]

    Taflove A 1995 Computational Electrodynamics: The Finite Difference Time Domain Method (Norwood, MA: Artech House)

计量
  • 文章访问数:  4579
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-30
  • 修回日期:  2012-06-17
  • 刊出日期:  2012-11-05

基于四能级原子系统模型增益媒质激光原理研究

  • 1. 安徽大学电子信息工程学院智能计算与信号处理重点实验室, 合肥 230039;
  • 2. 合肥师范学院物理电子系, 合肥 230061
    基金项目: 国家自然科学基金(批准号: 60931002, 61101064, 51277001)、安徽省杰出自然科学基金(批准号: 1108085J01)、安徽省高校自然科学基金(批准号: KJ2011A002, KJ2011A242) 和安徽大学211工程资助的课题.

摘要: 作为超材料研究中的重点, 增益媒质因其放大特性而表现出良好的应用前景.本文基于四能级原子结构系统模型, 引入一种全新的抽运机理:高斯抽运. 用时域有限差分方法对增益媒质激光产生原理进行模拟计算. 数值模拟结果表明, 该模型和新抽运机理的频谱特性、阈值特性以及动态演化过程和理论分析一致. 研究结果可为计算更复杂超材料系统提供参考.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回