-
With the rapid development of photovoltaic industry in recent years, organic solar cells have attracted much attention due to their advantages of low cost, light weight, capacity of batch production, simple production process and flexible performance. However, there are still some limitations hindering their commercialization process, including low photoelectric conversion efficiency and poor transmission color rendering. The introduction of photonic crystals provides a new way to solve these two problems. Starting from the optimization principle of photonic crystals, the effects of both one-dimensional photonic crystals and two-dimensional photonic crystals on organic solar cells, especially the short circuit current and photoelectric conversion efficiency, are systematically summarized in this paper. Then, we focus on the reasons for the performance improvement of organic solar cells based on one-dimensional photonic crystals and two-dimensional photonic crystals. The results of the experiments and characterization show that the performance improvement is mainly attributed to the photonic crystal acting as the reflector in the device. Photonic bandgap, a vivid property that the photonic crystals have, can block the light transmitting organic solar cells at a certain frequency. So, the light within the photonic bandgap is reflected back into the device, thus promoting the secondary absorption of light by the active layer which can result in the stronger light absorption capacity of the active layer, and then improving the performance of the device. In addition, the reason why one-dimensional photonic crystals can be used to regulate the color rendering of semitransparent organic solar cell is described in detail. This is of great significance to photovoltaic construction industry because semitransparent organic solar cells with excellent color rendering property can be widely used in it. However, due to the limitation of photonic crystal optimization mechanism, the reported applications so far have failed to improve the filling factor and open circuit voltage of the device, and due to the limitation of its own structure, three-dimensional photonic crystals have not been reported to be used in organic solar cells. Finally, by combining the existing research progress of organic optoelectronic devices, we look into the future research direction of organic solar cells based on photonic crystals.
[1] Yao M N, Li T F, Long Y B, Shen P, Wang G X, Li C L, Liu J S, Guo W B, Wang Y F, Shen L, Zhan X W 2020 Sci. Bull. 65 217Google Scholar
[2] 陶春先, 王琦, 李业, 王振云, 卢忠荣, 张大伟 2015 光谱学与光谱分析 35 1173Google Scholar
Tao C X, Wang Q, LI Y, Wang Z Y, Lu Z R, Zhang D W 2015 Spectrosc. Spect. Anal. 35 1173Google Scholar
[3] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金 2020 物理学报 69 184101Google Scholar
Fang Y T, Wang Z X, Fan E P, Li X X, Wang H J 2020 Acta Phys. Sin. 69 184101Google Scholar
[4] 刘亮, 韩德专, 石磊 2020 物理学报 69 157301Google Scholar
Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar
[5] 苏安, 蒙成举, 唐秀福, 潘继环, 高英俊 2020 红外与激光工程 48 0817001
Su A, Meng C J, Tang X F, Pan J H, Gao Y J 2020 Infrared and Laser Engineering 48 0817001
[6] Liu L, Lim S Y, Law C S, Jin B, Abell A D, Ni G, Santos A 2020 ACS Appl. Mater. Interfaces 12 57079Google Scholar
[7] Villeneuve P R, Piché M 1992 Phys. Rev. B 46 4969Google Scholar
[8] Li H, Wang J J, Ma Y T, Chu J, Cheng X A, Shi L, Jiang T 2020 Nanophotonics 9 4337Google Scholar
[9] Wu Y, Liu G J, Li H, Han P S, Cheng J Y, Zhou L 2020 Phys. Status Solidi A 217 1900539Google Scholar
[10] Cheng X, Zhou X, Tao L Y, Yu W T, Liu C, Cheng Y, Ma C J, Shang N Z, Xie J, Liu K H, Liu Z F 2020 Nanoscale 12 14472Google Scholar
[11] McNulty D, Landgraf V, Trabesinger S 2020 RSC Adv. 10 24108Google Scholar
[12] Arunachalam M, Kwag S, Lee I, Kim C S, Lee S K, Kang S H 2019 Korean J. Mater. Res. 29 491Google Scholar
[13] Yu W J, Shen L, Shen P, Meng F X, Long Y B, Wang Y A, Lv T Y, Ruan S P, Chen G H 2013 Sol. Energy Mater. Sol. Cells 117 198Google Scholar
[14] Zhang Y D, Peng Z S, Cai C S, Liu Z, Lin Y B, Zheng W H, Yang J Y, Hou L T, Cao Y 2016 J. Mater. Chem. A 4 11821Google Scholar
[15] Liu F, Zhou Z C, Zhang C, Zhang J Y, Hu Q, Vergote T, P.Russell T, Zhu X Z 2017 Adv. Mater. 29 1606574Google Scholar
[16] Long Y B 2011 Appl. Phys. Lett. 99 093310Google Scholar
[17] Yu W J, Shen L, Long Y B, Guo W B, Meng F X, Ruan S P, Jia X, Ma H S, Chen W Y 2012 Appl. Phys. Lett. 101 153307Google Scholar
[18] Xu G Y, Shen L, Cui C H, Wen S P, Xue R M, Chen W J, Chen H Y, Zhang J W, Li H K, Li Y W, Li Y F 2017 Adv. Funct. Mater. 27 1605908Google Scholar
[19] 梁文跃, 钟锦耀, 徐海涛, 邓海东, 王奇生, 龙拥兵 2018 光子学报 47 0823003Google Scholar
Liang W Y, Zhong J Y, Xu H T, Deng H D, Wang Q S, Long Y B 2018 Acta Photonica Sin. 47 0823003Google Scholar
[20] Zheng W H, Luo X H, Zhang Y D, Ye C B, Qin A J, Cao Y, Hou L T 2020 ACS Appl. Mater. Interfaces 12 23190Google Scholar
[21] Ramirez Quiroz C, Bronnbauer C, Levchuk L, Hou Y, Brabec C, Forberich K 2016 ACS Nano 10 5104Google Scholar
[22] Lu J H, Lin Y H, Jiang B H, Yeh C H, Kao J C, Chen C P 2018 Adv. Funct. Mater. 28 1703398Google Scholar
[23] Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901Google Scholar
[24] Liu J S, Yao M N, Shen L 2019 J. Mater. Chem. C 7 3121Google Scholar
[25] Kang S M, Jang S, Lee J K, Yoon D, Yoo D E, Lee J W, Choi M, Park N G 2016 Small 12 2443Google Scholar
[26] 赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9Google Scholar
Zhao C, Ma Y, Wang Y, Zhou X, Li H Z, Li M Z, Song Y L 2018 Acta Chim. Sinica 76 9Google Scholar
[27] Duche D, Masclaux C, Rouzo J, Gourgon C 2015 Appl. Phys. Lett. 117 053108
[28] Jo H, Sohn A, Shin K S, Kumar B, Kim J H, Kim D W, Kim S W 2014 ACS Appl. Mater. Interfaces 6 1030Google Scholar
[29] Zhou L, Ou Q D, Chen J D, Shen S, Tang J X, Li Y Q, Lee S T 2014 Sci. Rep. 4 4040Google Scholar
[30] Lan W X, Wang Y W, Singh J, Zhu F R 2018 ACS Photonics 5 1144Google Scholar
[31] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar
Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar
-
表 1 无/有(WO3/LiF)N 的STOSC器件的详细性能参数[13]
Table 1. Detailed performance parameters of STOSC devices without/with (WO3/LiF)N [13].
器件类型 JSC/
(mA·cm–2)开路电压
VOC/V填充因子(fill
factor, FF)/%PCE/% 无1DPCs 6.00 0.64 50.0 1.92 (WO3/LiF)2 6.39 0.64 50.1 2.05 (WO3/LiF)4 7.01 0.64 50.4 2.26 (WO3/LiF)6 7.51 0.64 48.7 2.34 (WO3/LiF)8 7.90 0.64 48.7 2.46 -
[1] Yao M N, Li T F, Long Y B, Shen P, Wang G X, Li C L, Liu J S, Guo W B, Wang Y F, Shen L, Zhan X W 2020 Sci. Bull. 65 217Google Scholar
[2] 陶春先, 王琦, 李业, 王振云, 卢忠荣, 张大伟 2015 光谱学与光谱分析 35 1173Google Scholar
Tao C X, Wang Q, LI Y, Wang Z Y, Lu Z R, Zhang D W 2015 Spectrosc. Spect. Anal. 35 1173Google Scholar
[3] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金 2020 物理学报 69 184101Google Scholar
Fang Y T, Wang Z X, Fan E P, Li X X, Wang H J 2020 Acta Phys. Sin. 69 184101Google Scholar
[4] 刘亮, 韩德专, 石磊 2020 物理学报 69 157301Google Scholar
Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar
[5] 苏安, 蒙成举, 唐秀福, 潘继环, 高英俊 2020 红外与激光工程 48 0817001
Su A, Meng C J, Tang X F, Pan J H, Gao Y J 2020 Infrared and Laser Engineering 48 0817001
[6] Liu L, Lim S Y, Law C S, Jin B, Abell A D, Ni G, Santos A 2020 ACS Appl. Mater. Interfaces 12 57079Google Scholar
[7] Villeneuve P R, Piché M 1992 Phys. Rev. B 46 4969Google Scholar
[8] Li H, Wang J J, Ma Y T, Chu J, Cheng X A, Shi L, Jiang T 2020 Nanophotonics 9 4337Google Scholar
[9] Wu Y, Liu G J, Li H, Han P S, Cheng J Y, Zhou L 2020 Phys. Status Solidi A 217 1900539Google Scholar
[10] Cheng X, Zhou X, Tao L Y, Yu W T, Liu C, Cheng Y, Ma C J, Shang N Z, Xie J, Liu K H, Liu Z F 2020 Nanoscale 12 14472Google Scholar
[11] McNulty D, Landgraf V, Trabesinger S 2020 RSC Adv. 10 24108Google Scholar
[12] Arunachalam M, Kwag S, Lee I, Kim C S, Lee S K, Kang S H 2019 Korean J. Mater. Res. 29 491Google Scholar
[13] Yu W J, Shen L, Shen P, Meng F X, Long Y B, Wang Y A, Lv T Y, Ruan S P, Chen G H 2013 Sol. Energy Mater. Sol. Cells 117 198Google Scholar
[14] Zhang Y D, Peng Z S, Cai C S, Liu Z, Lin Y B, Zheng W H, Yang J Y, Hou L T, Cao Y 2016 J. Mater. Chem. A 4 11821Google Scholar
[15] Liu F, Zhou Z C, Zhang C, Zhang J Y, Hu Q, Vergote T, P.Russell T, Zhu X Z 2017 Adv. Mater. 29 1606574Google Scholar
[16] Long Y B 2011 Appl. Phys. Lett. 99 093310Google Scholar
[17] Yu W J, Shen L, Long Y B, Guo W B, Meng F X, Ruan S P, Jia X, Ma H S, Chen W Y 2012 Appl. Phys. Lett. 101 153307Google Scholar
[18] Xu G Y, Shen L, Cui C H, Wen S P, Xue R M, Chen W J, Chen H Y, Zhang J W, Li H K, Li Y W, Li Y F 2017 Adv. Funct. Mater. 27 1605908Google Scholar
[19] 梁文跃, 钟锦耀, 徐海涛, 邓海东, 王奇生, 龙拥兵 2018 光子学报 47 0823003Google Scholar
Liang W Y, Zhong J Y, Xu H T, Deng H D, Wang Q S, Long Y B 2018 Acta Photonica Sin. 47 0823003Google Scholar
[20] Zheng W H, Luo X H, Zhang Y D, Ye C B, Qin A J, Cao Y, Hou L T 2020 ACS Appl. Mater. Interfaces 12 23190Google Scholar
[21] Ramirez Quiroz C, Bronnbauer C, Levchuk L, Hou Y, Brabec C, Forberich K 2016 ACS Nano 10 5104Google Scholar
[22] Lu J H, Lin Y H, Jiang B H, Yeh C H, Kao J C, Chen C P 2018 Adv. Funct. Mater. 28 1703398Google Scholar
[23] Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901Google Scholar
[24] Liu J S, Yao M N, Shen L 2019 J. Mater. Chem. C 7 3121Google Scholar
[25] Kang S M, Jang S, Lee J K, Yoon D, Yoo D E, Lee J W, Choi M, Park N G 2016 Small 12 2443Google Scholar
[26] 赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9Google Scholar
Zhao C, Ma Y, Wang Y, Zhou X, Li H Z, Li M Z, Song Y L 2018 Acta Chim. Sinica 76 9Google Scholar
[27] Duche D, Masclaux C, Rouzo J, Gourgon C 2015 Appl. Phys. Lett. 117 053108
[28] Jo H, Sohn A, Shin K S, Kumar B, Kim J H, Kim D W, Kim S W 2014 ACS Appl. Mater. Interfaces 6 1030Google Scholar
[29] Zhou L, Ou Q D, Chen J D, Shen S, Tang J X, Li Y Q, Lee S T 2014 Sci. Rep. 4 4040Google Scholar
[30] Lan W X, Wang Y W, Singh J, Zhu F R 2018 ACS Photonics 5 1144Google Scholar
[31] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar
Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar
Catalog
Metrics
- Abstract views: 8476
- PDF Downloads: 263
- Cited By: 0