Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of organic solar cells based on photonic crystals

Lan Wei-Xia Gu Jia-Lu Gao Xiao-Hui Liao Ying-Jie Zhong Song-Yi Zhang Wei-Dong Peng Yan Sun Yu Wei Bin

Citation:

Research progress of organic solar cells based on photonic crystals

Lan Wei-Xia, Gu Jia-Lu, Gao Xiao-Hui, Liao Ying-Jie, Zhong Song-Yi, Zhang Wei-Dong, Peng Yan, Sun Yu, Wei Bin
PDF
HTML
Get Citation
  • With the rapid development of photovoltaic industry in recent years, organic solar cells have attracted much attention due to their advantages of low cost, light weight, capacity of batch production, simple production process and flexible performance. However, there are still some limitations hindering their commercialization process, including low photoelectric conversion efficiency and poor transmission color rendering. The introduction of photonic crystals provides a new way to solve these two problems. Starting from the optimization principle of photonic crystals, the effects of both one-dimensional photonic crystals and two-dimensional photonic crystals on organic solar cells, especially the short circuit current and photoelectric conversion efficiency, are systematically summarized in this paper. Then, we focus on the reasons for the performance improvement of organic solar cells based on one-dimensional photonic crystals and two-dimensional photonic crystals. The results of the experiments and characterization show that the performance improvement is mainly attributed to the photonic crystal acting as the reflector in the device. Photonic bandgap, a vivid property that the photonic crystals have, can block the light transmitting organic solar cells at a certain frequency. So, the light within the photonic bandgap is reflected back into the device, thus promoting the secondary absorption of light by the active layer which can result in the stronger light absorption capacity of the active layer, and then improving the performance of the device. In addition, the reason why one-dimensional photonic crystals can be used to regulate the color rendering of semitransparent organic solar cell is described in detail. This is of great significance to photovoltaic construction industry because semitransparent organic solar cells with excellent color rendering property can be widely used in it. However, due to the limitation of photonic crystal optimization mechanism, the reported applications so far have failed to improve the filling factor and open circuit voltage of the device, and due to the limitation of its own structure, three-dimensional photonic crystals have not been reported to be used in organic solar cells. Finally, by combining the existing research progress of organic optoelectronic devices, we look into the future research direction of organic solar cells based on photonic crystals.
      Corresponding author: Zhong Song-Yi, zhongsongyi@shu.edu.cn ; Zhang Wei-Dong, zhangwd@sjtu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 2019YFB1703604) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62005152)
    [1]

    Yao M N, Li T F, Long Y B, Shen P, Wang G X, Li C L, Liu J S, Guo W B, Wang Y F, Shen L, Zhan X W 2020 Sci. Bull. 65 217Google Scholar

    [2]

    陶春先, 王琦, 李业, 王振云, 卢忠荣, 张大伟 2015 光谱学与光谱分析 35 1173Google Scholar

    Tao C X, Wang Q, LI Y, Wang Z Y, Lu Z R, Zhang D W 2015 Spectrosc. Spect. Anal. 35 1173Google Scholar

    [3]

    方云团, 王张鑫, 范尔盼, 李小雪, 王洪金 2020 物理学报 69 184101Google Scholar

    Fang Y T, Wang Z X, Fan E P, Li X X, Wang H J 2020 Acta Phys. Sin. 69 184101Google Scholar

    [4]

    刘亮, 韩德专, 石磊 2020 物理学报 69 157301Google Scholar

    Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar

    [5]

    苏安, 蒙成举, 唐秀福, 潘继环, 高英俊 2020 红外与激光工程 48 0817001

    Su A, Meng C J, Tang X F, Pan J H, Gao Y J 2020 Infrared and Laser Engineering 48 0817001

    [6]

    Liu L, Lim S Y, Law C S, Jin B, Abell A D, Ni G, Santos A 2020 ACS Appl. Mater. Interfaces 12 57079Google Scholar

    [7]

    Villeneuve P R, Piché M 1992 Phys. Rev. B 46 4969Google Scholar

    [8]

    Li H, Wang J J, Ma Y T, Chu J, Cheng X A, Shi L, Jiang T 2020 Nanophotonics 9 4337Google Scholar

    [9]

    Wu Y, Liu G J, Li H, Han P S, Cheng J Y, Zhou L 2020 Phys. Status Solidi A 217 1900539Google Scholar

    [10]

    Cheng X, Zhou X, Tao L Y, Yu W T, Liu C, Cheng Y, Ma C J, Shang N Z, Xie J, Liu K H, Liu Z F 2020 Nanoscale 12 14472Google Scholar

    [11]

    McNulty D, Landgraf V, Trabesinger S 2020 RSC Adv. 10 24108Google Scholar

    [12]

    Arunachalam M, Kwag S, Lee I, Kim C S, Lee S K, Kang S H 2019 Korean J. Mater. Res. 29 491Google Scholar

    [13]

    Yu W J, Shen L, Shen P, Meng F X, Long Y B, Wang Y A, Lv T Y, Ruan S P, Chen G H 2013 Sol. Energy Mater. Sol. Cells 117 198Google Scholar

    [14]

    Zhang Y D, Peng Z S, Cai C S, Liu Z, Lin Y B, Zheng W H, Yang J Y, Hou L T, Cao Y 2016 J. Mater. Chem. A 4 11821Google Scholar

    [15]

    Liu F, Zhou Z C, Zhang C, Zhang J Y, Hu Q, Vergote T, P.Russell T, Zhu X Z 2017 Adv. Mater. 29 1606574Google Scholar

    [16]

    Long Y B 2011 Appl. Phys. Lett. 99 093310Google Scholar

    [17]

    Yu W J, Shen L, Long Y B, Guo W B, Meng F X, Ruan S P, Jia X, Ma H S, Chen W Y 2012 Appl. Phys. Lett. 101 153307Google Scholar

    [18]

    Xu G Y, Shen L, Cui C H, Wen S P, Xue R M, Chen W J, Chen H Y, Zhang J W, Li H K, Li Y W, Li Y F 2017 Adv. Funct. Mater. 27 1605908Google Scholar

    [19]

    梁文跃, 钟锦耀, 徐海涛, 邓海东, 王奇生, 龙拥兵 2018 光子学报 47 0823003Google Scholar

    Liang W Y, Zhong J Y, Xu H T, Deng H D, Wang Q S, Long Y B 2018 Acta Photonica Sin. 47 0823003Google Scholar

    [20]

    Zheng W H, Luo X H, Zhang Y D, Ye C B, Qin A J, Cao Y, Hou L T 2020 ACS Appl. Mater. Interfaces 12 23190Google Scholar

    [21]

    Ramirez Quiroz C, Bronnbauer C, Levchuk L, Hou Y, Brabec C, Forberich K 2016 ACS Nano 10 5104Google Scholar

    [22]

    Lu J H, Lin Y H, Jiang B H, Yeh C H, Kao J C, Chen C P 2018 Adv. Funct. Mater. 28 1703398Google Scholar

    [23]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901Google Scholar

    [24]

    Liu J S, Yao M N, Shen L 2019 J. Mater. Chem. C 7 3121Google Scholar

    [25]

    Kang S M, Jang S, Lee J K, Yoon D, Yoo D E, Lee J W, Choi M, Park N G 2016 Small 12 2443Google Scholar

    [26]

    赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9Google Scholar

    Zhao C, Ma Y, Wang Y, Zhou X, Li H Z, Li M Z, Song Y L 2018 Acta Chim. Sinica 76 9Google Scholar

    [27]

    Duche D, Masclaux C, Rouzo J, Gourgon C 2015 Appl. Phys. Lett. 117 053108

    [28]

    Jo H, Sohn A, Shin K S, Kumar B, Kim J H, Kim D W, Kim S W 2014 ACS Appl. Mater. Interfaces 6 1030Google Scholar

    [29]

    Zhou L, Ou Q D, Chen J D, Shen S, Tang J X, Li Y Q, Lee S T 2014 Sci. Rep. 4 4040Google Scholar

    [30]

    Lan W X, Wang Y W, Singh J, Zhu F R 2018 ACS Photonics 5 1144Google Scholar

    [31]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

  • 图 1  光子晶体结构示意图: (a) 一维; (b) 二维; (c) 三维

    Figure 1.  Schematic diagram of photonic crystal: (a) One-dimensional; (b) two-dimensional; (c) three-dimensional.

    图 2  (a) 制备有(WO3/LiF)N的STOSC; (b) N取不同值时(WO3/LiF)N的反射光谱; (c) N取不同值时(WO3/LiF)N的透射光谱[13]

    Figure 2.  (a) Structure of STOSC with (WO3/LiF)N; (b) reflection spectra of (WO3/LiF)N; (c) transmission spectra of (WO3/LiF)N[13].

    图 3  (a) (TiO2/SiO2)横截面的扫描电子显微镜图像(比例尺为200 nm); (b) 制备有(TiO2/SiO2)的STOSC器件[14]

    Figure 3.  (a) Cross-sectional scanning electron microscope images of (TiO2/SiO2) (Scale 200 nm); (b) the structure of STOSC with (TiO2/SiO2) [14].

    图 4  具有叠层1DPCs的STOSC结构[19]

    Figure 4.  Configuration of the STOSC based on tandem 1DPCs [19].

    图 5  制备有F-1DFCs的全柔性STOSC器件结构[20]

    Figure 5.  Device structure of all-flexible STOSC with F-1DPCs [20].

    图 6  STOSC的透视颜色对应的CIE坐标[20] (a) 基于非富勒烯; (b) 基于富勒烯

    Figure 6.  Corresponding CIE coordinates of all-flexible STOSC [20]: (a) With polymer F-1DPCs; (b) without polymer F-1DPCs.

    图 7  (a) 器件结构; (b) 1DPCs具有不同周期数时P3HT:PCBM的模拟吸收光谱[23]

    Figure 7.  (a) Device structure; (b) simulated absorptivity spectra in the P3HT:PCBM layer with different periods of 1DPCs [23].

    图 8  图案化的P3HT:PCBM 2DPC的扫描电子显微镜形貌[27]

    Figure 8.  Scanning electron microscope image of 2D photonic crystal slab in P3HT:PCBM[27].

    图 9  (a) Au NPs在AAO中的分布; (b) 制备有Au NPs-AAO的OSC器件结构[28]

    Figure 9.  (a) Distribution of Au NPs in AAO; (b) the OSC device with Au NPs-AAO [28].

    图 10  具有MEN的ZnO层和紫外线固化树脂模板的AFM形貌[29] (a) ZnO层; (b) 紫外线固化树脂模板

    Figure 10.  AFM morphologies of ZnO and UV-resin templates with MEN [29]: (a) ZnO; (b) UV-resin templates.

    图 11  制备有MEN的器件结构以及四种器件的电流密度-电压特征曲线和外量子效率曲线[29] (a) 制备有MEN的器件结构; (b) 电流密度-电压特征曲线; (c) 外量子效率曲线

    Figure 11.  Device structure with MEN, the J-V characteristic curves and the EQE spectra of the four devices [29]: (a) The device structure with MEN; (b) the J-V characteristic curves; (c) the EQE spectra.

    图 12  活性层为2DPCs结构的OSCs器件结构以及器件的电流密度-电压特征曲线和IPCE曲线[30] (a)器件结构; (b) 电流密度-电压特征曲线; (c) IPCE曲线

    Figure 12.  Structure with an active layer of 2DPCs, the J-V characteristic curves and the IPCE spectra of the OSC device [30]: (a) The structure; (b) the J-V characteristic curves; (c) the IPCE spectra.

    表 1  无/有(WO3/LiF)N 的STOSC器件的详细性能参数[13]

    Table 1.  Detailed performance parameters of STOSC devices without/with (WO3/LiF)N [13].

    器件类型JSC/
    (mA·cm–2)
    开路电压
    VOC/V
    填充因子(fill
    factor, FF)/%
    PCE/%
    无1DPCs6.000.6450.01.92
    (WO3/LiF)26.390.6450.12.05
    (WO3/LiF)47.010.6450.42.26
    (WO3/LiF)67.510.6448.72.34
    (WO3/LiF)87.900.6448.72.46
    DownLoad: CSV

    表 2  无/有Au NPs-AAO的OSC器件的详细性能参数[28]

    Table 2.  Detailed performance parameters of OSC devices without/with Au NPs-AAO [28].

    器件类型JSC/(mA·cm–2)VOC/VFF/%PCE/%
    无Au NPs-AAO3.980.61431.07
    有Au NPs-AAO6.050.61511.51
    DownLoad: CSV
  • [1]

    Yao M N, Li T F, Long Y B, Shen P, Wang G X, Li C L, Liu J S, Guo W B, Wang Y F, Shen L, Zhan X W 2020 Sci. Bull. 65 217Google Scholar

    [2]

    陶春先, 王琦, 李业, 王振云, 卢忠荣, 张大伟 2015 光谱学与光谱分析 35 1173Google Scholar

    Tao C X, Wang Q, LI Y, Wang Z Y, Lu Z R, Zhang D W 2015 Spectrosc. Spect. Anal. 35 1173Google Scholar

    [3]

    方云团, 王张鑫, 范尔盼, 李小雪, 王洪金 2020 物理学报 69 184101Google Scholar

    Fang Y T, Wang Z X, Fan E P, Li X X, Wang H J 2020 Acta Phys. Sin. 69 184101Google Scholar

    [4]

    刘亮, 韩德专, 石磊 2020 物理学报 69 157301Google Scholar

    Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar

    [5]

    苏安, 蒙成举, 唐秀福, 潘继环, 高英俊 2020 红外与激光工程 48 0817001

    Su A, Meng C J, Tang X F, Pan J H, Gao Y J 2020 Infrared and Laser Engineering 48 0817001

    [6]

    Liu L, Lim S Y, Law C S, Jin B, Abell A D, Ni G, Santos A 2020 ACS Appl. Mater. Interfaces 12 57079Google Scholar

    [7]

    Villeneuve P R, Piché M 1992 Phys. Rev. B 46 4969Google Scholar

    [8]

    Li H, Wang J J, Ma Y T, Chu J, Cheng X A, Shi L, Jiang T 2020 Nanophotonics 9 4337Google Scholar

    [9]

    Wu Y, Liu G J, Li H, Han P S, Cheng J Y, Zhou L 2020 Phys. Status Solidi A 217 1900539Google Scholar

    [10]

    Cheng X, Zhou X, Tao L Y, Yu W T, Liu C, Cheng Y, Ma C J, Shang N Z, Xie J, Liu K H, Liu Z F 2020 Nanoscale 12 14472Google Scholar

    [11]

    McNulty D, Landgraf V, Trabesinger S 2020 RSC Adv. 10 24108Google Scholar

    [12]

    Arunachalam M, Kwag S, Lee I, Kim C S, Lee S K, Kang S H 2019 Korean J. Mater. Res. 29 491Google Scholar

    [13]

    Yu W J, Shen L, Shen P, Meng F X, Long Y B, Wang Y A, Lv T Y, Ruan S P, Chen G H 2013 Sol. Energy Mater. Sol. Cells 117 198Google Scholar

    [14]

    Zhang Y D, Peng Z S, Cai C S, Liu Z, Lin Y B, Zheng W H, Yang J Y, Hou L T, Cao Y 2016 J. Mater. Chem. A 4 11821Google Scholar

    [15]

    Liu F, Zhou Z C, Zhang C, Zhang J Y, Hu Q, Vergote T, P.Russell T, Zhu X Z 2017 Adv. Mater. 29 1606574Google Scholar

    [16]

    Long Y B 2011 Appl. Phys. Lett. 99 093310Google Scholar

    [17]

    Yu W J, Shen L, Long Y B, Guo W B, Meng F X, Ruan S P, Jia X, Ma H S, Chen W Y 2012 Appl. Phys. Lett. 101 153307Google Scholar

    [18]

    Xu G Y, Shen L, Cui C H, Wen S P, Xue R M, Chen W J, Chen H Y, Zhang J W, Li H K, Li Y W, Li Y F 2017 Adv. Funct. Mater. 27 1605908Google Scholar

    [19]

    梁文跃, 钟锦耀, 徐海涛, 邓海东, 王奇生, 龙拥兵 2018 光子学报 47 0823003Google Scholar

    Liang W Y, Zhong J Y, Xu H T, Deng H D, Wang Q S, Long Y B 2018 Acta Photonica Sin. 47 0823003Google Scholar

    [20]

    Zheng W H, Luo X H, Zhang Y D, Ye C B, Qin A J, Cao Y, Hou L T 2020 ACS Appl. Mater. Interfaces 12 23190Google Scholar

    [21]

    Ramirez Quiroz C, Bronnbauer C, Levchuk L, Hou Y, Brabec C, Forberich K 2016 ACS Nano 10 5104Google Scholar

    [22]

    Lu J H, Lin Y H, Jiang B H, Yeh C H, Kao J C, Chen C P 2018 Adv. Funct. Mater. 28 1703398Google Scholar

    [23]

    Zhang X L, Song J F, Li X B, Feng J, Sun H B 2012 Appl. Phys. Lett. 101 243901Google Scholar

    [24]

    Liu J S, Yao M N, Shen L 2019 J. Mater. Chem. C 7 3121Google Scholar

    [25]

    Kang S M, Jang S, Lee J K, Yoon D, Yoo D E, Lee J W, Choi M, Park N G 2016 Small 12 2443Google Scholar

    [26]

    赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林 2018 化学学报 76 9Google Scholar

    Zhao C, Ma Y, Wang Y, Zhou X, Li H Z, Li M Z, Song Y L 2018 Acta Chim. Sinica 76 9Google Scholar

    [27]

    Duche D, Masclaux C, Rouzo J, Gourgon C 2015 Appl. Phys. Lett. 117 053108

    [28]

    Jo H, Sohn A, Shin K S, Kumar B, Kim J H, Kim D W, Kim S W 2014 ACS Appl. Mater. Interfaces 6 1030Google Scholar

    [29]

    Zhou L, Ou Q D, Chen J D, Shen S, Tang J X, Li Y Q, Lee S T 2014 Sci. Rep. 4 4040Google Scholar

    [30]

    Lan W X, Wang Y W, Singh J, Zhu F R 2018 ACS Photonics 5 1144Google Scholar

    [31]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

  • [1] Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui. Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate. Acta Physica Sinica, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [2] Zhou Peng-Chao, Zhang Wei-Dong, Gu Jia-Lu, Chen Hui-Min, Hu Teng-Da, Pu Hua-Yan, Lan Wei-Xia, Wei Bin. Dual non-fullerene acceptors based high efficiency ternary organic solar cells. Acta Physica Sinica, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [3] Zhu Li-Feng, Pan Wen-Yuan, Xie Yan, Zhang Bo-Ping, Yin Yang, Zhao Gao-Lei. Effect of regulation of defect ion on ferroelectric photovoltaic characteristics of BiFeO3-BaTiO3 based perovskite materials. Acta Physica Sinica, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [4] Li Xue,  Wang Liang,  Xiong Jian-Qiao,  Shao Qiu-Ping,  Jiang Rong,  Chen Shu-Fen. Enhanced light absorption and device performances of organic photovoltaic devices with Au tetrahedra nanoparticles. Acta Physica Sinica, 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [5] Sun Long, Ren Hao, Feng Da-Zheng, Wang Shi-Yu, Xing Meng-Dao. Optical and electrical properties of short-pitch solar cells with finite-difference frequency-domain method. Acta Physica Sinica, 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [6] Yang Hong-Wei, Meng Shan-Shan, Gao Ran-Ran, Peng Shuo. Analysis of photonic crystal transmission properties by the precise integration time domain. Acta Physica Sinica, 2017, 66(8): 084101. doi: 10.7498/aps.66.084101
    [7] Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Niu Li-Gang, Xu Ying. Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells. Acta Physica Sinica, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [8] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [9] Li Meng, Niu He-Ying, Yao Lu-Yan, Wang Dong-Liang, Zhou Zhong-Po, Ma Heng. Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Acta Physica Sinica, 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [10] Wang Peng, Guo Run-Da, Chen Yu, Yue Shou-Zhen, Zhao Yi, Liu Shi-Yong. Influence of gradient doping on photoelectric conversion efficiency of organic photovoltaic devices. Acta Physica Sinica, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [11] Li Qing, Li Hai-Qiang, Zhao Juan, Huang Jiang, Yu Jun-Sheng. Effect of various cathode modifying layers on the performances of SubPc/C60 based inverted organic solar cells. Acta Physica Sinica, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [12] Li Wen-Sheng, Luo Shi-Jun, Huang Hai-Ming, Zhang Qin, Shi Du-Fang. Polarization properties of one-dimensional photonic crystal tunneling mode containing metamaterials. Acta Physica Sinica, 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [13] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [14] Li Yan, Fu Hai-Wei, Shao Min, Li Xiao-Li. Temperature characteristic of photonic crystals resonant cavitycomposed of GaAs pillars with graphite lattice. Acta Physica Sinica, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [15] Liu Rui, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Cao Xiao-Ning, Kong Chao, Cao Wen-Zhe, Gong Wei. Inserting various cathodic buffer layers to enhancethe performance of Pentacene/C60based organic solar cells. Acta Physica Sinica, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [16] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [17] Xing Hong-Wei, Peng Ying-Quan, Yang Qing-Sen, Ma Chao-Zhu, Wang Run-Sheng, Li Xun-Shuan. Simulation of polymer-fullerene bulk heterojunction solar cell. Acta Physica Sinica, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [18] Feng Li-Juan, Jiang Hai-Tao, Li Hong-Qiang, Zhang Ye-Wen, Chen Hong. The dispersive characteristics of impurity bands in coupled-resonator optical waveguides of photonic crystals. Acta Physica Sinica, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [19] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Lu Wei. Fabrication and photonic band gap property of the two-dimensional square lattice based on silicon. Acta Physica Sinica, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [20] Yu Tian-Bao, Liu Nian-Hua. Propagation of optical pulses through one-dimensional photonic crystals with a dispersive and gain defect layer. Acta Physica Sinica, 2004, 53(9): 3049-3053. doi: 10.7498/aps.53.3049
Metrics
  • Abstract views:  8476
  • PDF Downloads:  263
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2020
  • Accepted Date:  19 January 2021
  • Available Online:  07 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回