-
Aiming at the requirement of the on-line detailed atomic model in radiation hydrodynamic simulations, we propose a general model, multi-average ion collisional-radiative model (MAICRM), to rapidly simulate the ionization and charge state distribution of hot dense plasma under non-local thermal equilibrium (NLTE) conditions. In this model, an average ion is used to characterize the features of all the atomic states at one single charge state, including the average orbital occupation and the total population of the atomic states. The rate equations for the orbital occupations and the population are derived from the rate equations of the detailed configurations and separated into two sets under the two assumptions: one is the single orbital rate coefficients (including no occupation nor hole number of the relative orbital) that are only dependent on the charge state, and the other is the coupling of the excitation/de-excitation process and ionization/recombination process, which are weak. Namely, the orbital occupation of an average ion is mainly determined by the excitation/de-excitation process under a certain density and temperature; the population of the average ions is determined by the ionization/recombination process with the fixed orbital occupation. The two sets of rate equations are solved sequentially and iteratively until a set of converged orbital occupation and population values is obtained. The interplay between the occupation and the population is implicit in the excitation/de-excitation rate coefficient and ionization/recombination rate coefficient, each of which is a function of electron density and temperature as well as occupation. In this work, using the newly developed method and codes, the mean ionizations and charge state distributions of Fe, Xe and Au plasmas under different plasma conditions are calculated and in good agreement with the experimental results and DCA/SCA calculations. Meanwhile, compared with the DCA/SCA calculations, in which hundreds or thousands of detailed atomic states at each charge state are considered to obtain a converged ionization balance, MAICRM only considers one kind of ion at one single charge state, thus the computational cost of MAICRM is much reduced and lower than that of DCA/SCA. Due to its good degree of accuracy for ionization balance and its low computational cost, MAICRM is expected to be incorporated into the radiation hydrodynamic program to realize the online calculation of detailed nonequilibrium atomic models in the future.
-
Keywords:
- non-local thermal equilibrium plasma /
- average-ion /
- rate equation /
- radiation hydrodynamic
[1] Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar
[2] Whitney K G, Pulsifer P E, Apruzese J P, et al. 2001 Phys. Plasmas 8 3708Google Scholar
[3] Faussurier G, Blancard C, Decoster B A 1997 Phys. Rev. E 56 3474Google Scholar
[4] Bauche-Arnoult C, Bauche J, Klapisch M 1988 Adv. At. Mol. Phys. 23 131
[5] Bar-Shalom A, Oreg J, Goldstein W H, Shvarts D, Zigler A 1989 Phys. Rev. A. 40 3183Google Scholar
[6] Ralchenko Y 2001 J. Quant. Spectrosc. Radiat. Transf. 71 609Google Scholar
[7] Huo W Y, Lan K, Li Y S, et al. 2012 Phys. Rev. Lett. 109 145004Google Scholar
[8] Huo W Y, Li Z C, Chen Y H, et al. 2016 Phys. Rev. Lett. 117 125002Google Scholar
[9] Rosen M D, Scott H A, Hinkel D E, et al. 2011 High Energy Density Phys. 7 180Google Scholar
[10] Jones O S, Suter L J, Scott H A, et al. 2017 Phys. Plasmas 24 056312Google Scholar
[11] Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203Google Scholar
[12] Foord M E, Heeter R F, van Hoof P A M, et al. 2004 Phys. Rev. Lett. 93 055002Google Scholar
[13] Klapisch M, Schwob J L, Fraenkel B S, Oreg J 1977 J. Opt. Soc. Am. 67 148Google Scholar
[14] Kelly R L 1987 J. Phys. Chem. Ref. Data 16 860
[15] Ferland G J, Korista K T, Verner D A, et al. 1998 Publ. Astron. Soc. Pac. 110 761
[16] Rose S J 1998 J. Phys. B 31 2129Google Scholar
[17] Chung H K, Morgan W L, Lee R W, et al. 2003 J. Quant. Spectrosc. Radiat. Transf. 99 102
[18] Chenais-Popovics C, Malka V, Gauthier J C, et al. 2002 Phys. Rev. E. 65 046418Google Scholar
[19] Peyrusse O 2000 J. Phys. B. 33 4303Google Scholar
[20] Bauche J, Bauche-Arnoult C, Klapisch M 1991 J. Phys. B. 24 1Google Scholar
[21] Heeter R F, Hansen S B, Fournier K B, et al. 2007 Phys. Rev. Lett. 99 195001Google Scholar
[22] van Regemorter H 1962 Astrophys. J. 136 906Google Scholar
[23] Mewe R 1972 Astron. Astrophys. 20 215
[24] Kramers H A 1923 Philos. Mag. 46 836Google Scholar
[25] Lotz W 1967 Z. Phys. 206 205Google Scholar
-
图 2 Xe等离子体在
${T_{\rm{e}}} \!=\! 415\;{\rm{ eV}}$ ,${N_i} \!=\! 4.75 \!\times \! {\rm{1}}{{\rm{0}}^{18}}\;{\rm{ c}}{{\rm{m}}^{{{ - 3}}}}$ 时的离化度分布. 括号里的数是实验的误差范围Figure 2. The comparison of the mean ionization and CSD of Xe plasma at
${T_{\rm{e}}} = 415\;{\rm{eV}}$ ,${N_i} = 4.75\times 10^{18}\;{\rm{c}}{{\rm{m}}^{{{ - 3}}}}$ . The data in parenthesis is the experimental uncertainties.图 3 MAICRM计算的不同状态下Au等离子体的
$\langle Z \rangle$ 和离化度分布与实验测量[21]的比较. (a), (b), (c)和(d)中括号里的数是实验误差, (e)中电子温度Te, 辐射场温度Tr和电子密度Ne的单位分别是keV, eV和1020 cm–3Figure 3. The comparisons of the mean ionization
$\langle Z \rangle$ and CSD of Au plasma between MAICRM and the experimental results[21]. In panels (a), (b), (c) and (d) the data in parenthesis are the experimental uncertainties. In panel (e) the units of electron temperature Te, radiation temperature Tr and electron density Ne are keV, eV and 1020 cm–3 respectively. -
[1] Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar
[2] Whitney K G, Pulsifer P E, Apruzese J P, et al. 2001 Phys. Plasmas 8 3708Google Scholar
[3] Faussurier G, Blancard C, Decoster B A 1997 Phys. Rev. E 56 3474Google Scholar
[4] Bauche-Arnoult C, Bauche J, Klapisch M 1988 Adv. At. Mol. Phys. 23 131
[5] Bar-Shalom A, Oreg J, Goldstein W H, Shvarts D, Zigler A 1989 Phys. Rev. A. 40 3183Google Scholar
[6] Ralchenko Y 2001 J. Quant. Spectrosc. Radiat. Transf. 71 609Google Scholar
[7] Huo W Y, Lan K, Li Y S, et al. 2012 Phys. Rev. Lett. 109 145004Google Scholar
[8] Huo W Y, Li Z C, Chen Y H, et al. 2016 Phys. Rev. Lett. 117 125002Google Scholar
[9] Rosen M D, Scott H A, Hinkel D E, et al. 2011 High Energy Density Phys. 7 180Google Scholar
[10] Jones O S, Suter L J, Scott H A, et al. 2017 Phys. Plasmas 24 056312Google Scholar
[11] Stewart J C, Pyatt K D 1966 Astrophys. J. 144 1203Google Scholar
[12] Foord M E, Heeter R F, van Hoof P A M, et al. 2004 Phys. Rev. Lett. 93 055002Google Scholar
[13] Klapisch M, Schwob J L, Fraenkel B S, Oreg J 1977 J. Opt. Soc. Am. 67 148Google Scholar
[14] Kelly R L 1987 J. Phys. Chem. Ref. Data 16 860
[15] Ferland G J, Korista K T, Verner D A, et al. 1998 Publ. Astron. Soc. Pac. 110 761
[16] Rose S J 1998 J. Phys. B 31 2129Google Scholar
[17] Chung H K, Morgan W L, Lee R W, et al. 2003 J. Quant. Spectrosc. Radiat. Transf. 99 102
[18] Chenais-Popovics C, Malka V, Gauthier J C, et al. 2002 Phys. Rev. E. 65 046418Google Scholar
[19] Peyrusse O 2000 J. Phys. B. 33 4303Google Scholar
[20] Bauche J, Bauche-Arnoult C, Klapisch M 1991 J. Phys. B. 24 1Google Scholar
[21] Heeter R F, Hansen S B, Fournier K B, et al. 2007 Phys. Rev. Lett. 99 195001Google Scholar
[22] van Regemorter H 1962 Astrophys. J. 136 906Google Scholar
[23] Mewe R 1972 Astron. Astrophys. 20 215
[24] Kramers H A 1923 Philos. Mag. 46 836Google Scholar
[25] Lotz W 1967 Z. Phys. 206 205Google Scholar
Catalog
Metrics
- Abstract views: 5346
- PDF Downloads: 123
- Cited By: 0