Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of dynamic change of action potential on evolution behavior of spiral wave

Guan Fu-Rong Li Cheng-Qian Deng Min-Yi

Citation:

Effects of dynamic change of action potential on evolution behavior of spiral wave

Guan Fu-Rong, Li Cheng-Qian, Deng Min-Yi
PDF
HTML
Get Citation
  • It is observed in cardiac patients that the steepnesses of action potential duration (APD) restitution curve of cardiomyocytes in different regions of the ventricle are significantly different from region to region. However, the steep APD restitution curve can either lead the spiral wave to break up and set up the ventricular fibrillation in certain conditions or result in no breakup of spiral wave in other conditions. The relationship between the dynamic behavior of spiral wave and steep APD restitution curve is still not completely clear. Therefore, further research is needed. In this paper, a two-dimensional excitable medium cellular automata model is used to study the influences of the APD restitution curves with different steepnesses on the dynamic behavior of spiral wave. Numerical simulation results show that the steep APD restitution curve can stabilize the meandering spiral wave, causing the stable spiral wave to roam or break, and even to disappear. When the total average slope of APD restitution curve is greater than 1, it is observed that spiral wave may be still stable or meandering. When the total average slope of APD restitution curve is much smaller than 1, the breakup of spiral waves may occur. Three types of spiral wave breakups are observed. They are the Doppler instability, Eckhaus instability, and APD alternation. The Doppler instability and Eckhaus instability are related to the total average slope of APD restitution curve greater than 1, and the spiral wave breakup caused by APD alternans may occur when the total average slope of APD restitution curve is much smaller than 1. When the total average slope of APD restitution curve is greater than 1, the phenomena that spiral waves disappear by meandering out of the system boundary and conduction barriers are observed. In addition, we also find that increasing cellular APD is beneficial to preventing spiral wave from breaking up. The physical mechanisms behind those phenomena are heuristically analyzed.
      Corresponding author: Deng Min-Yi, dengminyi@mailbox.gxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12047567).
    [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851Google Scholar

    [2]

    Frisch T, Rica S, Coullet P, Gilli J M 1994 Phys. Rev. Lett. 72 1471Google Scholar

    [3]

    Winfree A T 1972 Science 175 634Google Scholar

    [4]

    Gorelova N A, Bures J 1983 J. Neurobiol. 14 353Google Scholar

    [5]

    Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978Google Scholar

    [6]

    Pandit S V, Jalife J 2013 Circ. Res. 112 849Google Scholar

    [7]

    Narayan S M, Krummen D E, Rappel W J 2012 J. Cardiovasc. Electr. 23 447Google Scholar

    [8]

    Lip G Y H, Fauchier L, Freedman S B, Gelder I V, Natale A, Gianni C, Nattel S, Potpara T, Rienstra M, Tse H F, Lane D A 2016 Nat. Rev. Dis. Primers 2 16016Google Scholar

    [9]

    Gray R A, Jalife J, Panfilov A V, Baxter W T, Cabo C, Davidenko J M, Pertsov A M 1995 Science 270 1222Google Scholar

    [10]

    Christoph J, Chebbok M, Richter C, Schetelig J S, Bittihn P, Stein S, Uzelac I, Fenton F H 2018 Nature 555 667Google Scholar

    [11]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349Google Scholar

    [12]

    Kinoshita S, Iwamoto M, Tateishi K, Suematsu N J, Ueyama D 2013 Phys. Rev. E 87 062815Google Scholar

    [13]

    Luther S, Fenton F H, Kornreich B G, Squires A, Bittihn P, Hornung D 2011 Nature 475 235Google Scholar

    [14]

    潘军廷, 何银杰, 夏远勋, 张宏 2020 物理学报 69 080503Google Scholar

    Pan J T, He Y J, Xia Y X, Zhang H 2020 Acta Phys. Sin. 69 080503Google Scholar

    [15]

    Fenton F H, Cherry E M, Hastings H M, Evans S J 2002 Chaos 12 852Google Scholar

    [16]

    Ng G A 2017 Pharmacol. Therapeut. 176 1Google Scholar

    [17]

    Rosenbaum D S, Kaplan D T, Kanai A, Jackson L, Garan H, Cohen R J, Salama G 1991 Circulation 84 1333Google Scholar

    [18]

    Banville I, Gray R A 2002 J. Cardiovasc. Elect. 13 1141Google Scholar

    [19]

    Berger R D 2004 Circ. Res. 94 567Google Scholar

    [20]

    Qu Z, Weiss J N 2015 Annu. Rev. Physiol. 77 29Google Scholar

    [21]

    Vandersickel N, Defauw A, Dawyndt P, Panflov A V 2016 Sci. Rep. 6 29397Google Scholar

    [22]

    Avula U M R, Abrams J, Katchman A, Zakharov S, Mironov S, Bayne J, Roybal D, Gorti A 2019 Jci Insight 5 e128765Google Scholar

    [23]

    Handa B S, Lawal S, Wright I J, Li X, García J C, Mansfield C, Chowdhury R A, Peters N S 2019 Front. Cardiovasc. Med. 6 34Google Scholar

    [24]

    Zheng Y, Wei D, Zhu X, Chen W, Fukuda K, Shimokawa H 2015 Comput. Biol. Med. 63 261Google Scholar

    [25]

    Garfinkel A, Kim Y H, Voroshilovsky O, Qu Z, Kil J R, Lee M H, Karagueuzian H S, Weiss J N, Chen P S 2000 Proc. Natl. Acad. Sci. U. S. A. 97 6061Google Scholar

    [26]

    Zhang N, Luo Q, Jin Q, Han Y, Huang S, Wei Y, Lin C, Chen K, Shen W, Wu L 2020 Cardiovasc. Drugs Ther. 34 323Google Scholar

    [27]

    Qu Z, Garfinkel A, Chen P S, Weiss J N 2000 Circulation 102 1664Google Scholar

    [28]

    Franz M R, Jamal S M, Narayan S M 2012 Europace 14 v58Google Scholar

    [29]

    Alonso S, Bär M, Echebarria B 2016 Rep. Prog. Phys. 79 096601Google Scholar

    [30]

    Clayton R H, Taggart P 2005 Biomed. Eng. Online 4 54Google Scholar

    [31]

    Nash M P, Bradley C P, Sutton P M, Clayton R H, Kallis P, Hayward M P, Paterson D J, Taggart P 2006 Exp. Physiol. 91 339Google Scholar

    [32]

    Bub G, Shrier A, Glass L 2005 Phys. Rev. Lett. 94 028105Google Scholar

    [33]

    Deng M Y, Dai J Y, Zhang X L 2015 Chin. Phys. B 24 090503Google Scholar

    [34]

    张学良, 谭惠丽, 唐国宁, 邓敏艺 2017 物理学报 66 200501Google Scholar

    Zhang X L, Tan H L, Tang G N, Deng M Y 2017 Acta Phys. Sin. 66 200501Google Scholar

    [35]

    Lin Y T, Chang E T Y, Eatock J, Galla T, Clayton R H 2017 J. R. Soc. Interface 14 20160968Google Scholar

    [36]

    Pak H N, Hong S J, Hwang G S, Lee H S, Park S W 2004 J. Cardiovasc. Electr. 15 1357Google Scholar

    [37]

    欧阳颀 2001 物理 30 30

    Ouyang Q 2001 Physics 30 30

  • 图 1  $ \alpha = 40 $和不同$ \beta , \gamma $下APD恢复曲线(a)和斜率$ \lambda $随舒张间隔DI的变化(b)

    Figure 1.  APD restitution curve (a) and the change of its slope $ \lambda $ with diastolic interval (DI) (b) for $ \alpha = 40 $ and different values of $ \beta $ and $ \gamma $

    图 2  在参数$ \alpha = 40 $, $ \gamma = 10 $, $ \beta = 14 $下不同时刻的膜电位斑图 (a)$ t = 0 $; (b)$ t = 20000 $; (c)$ t = 60000 $; (d)$ t = 100000 $

    Figure 2.  Patterns of the membrane potential at different time moments for $ \alpha = 40 $, $ \gamma = 10 $ and $ \beta = 14 $: (a)$ t = 0 $; (b)$ t = 20000 $; (c)$ t = 60000 $; (d)$ t = 100000 $.

    图 3  在参数$ \alpha = 40 $, $ \gamma = 10 $, $ \beta = 15 $下不同时刻的膜电位斑图, 白色代表静息态; 黑色代表激发态; 绿色(红色)代表元胞APD在[26, 30] ([31, 40])范围的不应态 (a) $ t = 0 $; (b) $ t = 400 $; (c) $ t = 490 $; (d) $ t = 510 $; (e) $ t = 560 $; (f) $ t = 1800 $; (g) $ t = 2000 $; (h) $ t = 3070 $

    Figure 3.  Patterns of the membrane potential at different time moments for $ \alpha = 40 $, $ \gamma = 10 $ and $ \beta = 15 $. The white and black represent the rest-state and excited state, respectively, the green (red) represents the refractory states in which the APD of the cell is in the range of [26,30] ([31, 40]): (a)$ t = 0 $; (b)$ t = 400 $; (c)$ t = 490 $; (d)$ t = 510 $; (e)$ t = 560 $; (f)$ t = 1800 $; (g)$ t = 2000 $; (h)$ t = 3070 $.

    图 4  在参数$ \alpha = 40 $, $ \gamma = 10 $, $ \beta = 18 $下不同时刻的膜电位斑图, 作图方式与图3一致 (a)$ t = 0 $; (b)$ t = 40 $; (c)$ t = 220 $; (d)$ t = 250 $; (e)$ t = 255 $; (f)$ t = 310 $; (g)$ t = 2850 $; (h)$ t = 34300 $

    Figure 4.  Patterns of the membrane potential at different time moments for $ \alpha = 40 $, $ \gamma = 10 $ and $ \beta = 18 $, the drawing method is consistent with Fig. 3: (a)$ t = 0 $; (b)$ t = 40 $; (c)$ t = 220 $; (d)$ t = 250 $; (e)$ t = 255 $; (f)$ t = 310 $; (g)$ t = 2850 $; (h)$ t = 34300 $.

    图 5  在参数$ \alpha = 40 $, $ \gamma = 10 $, $ \beta = 33 $下不同时刻的膜电位斑图, 作图方式与图3一致 (a)$ t = 0 $; (b)$ t = 50 $; (c)$ t = 60 $; (d)$t = $$ 100$; (e)$ t = 130 $; (f)$ t = 150 $; (g)$ t = 200 $; (h)$ t = 500 $

    Figure 5.  Patterns of the membrane potential at different time moments for $ \alpha = 40 $, $ \gamma = 10 $ and $ \beta = 33 $, the drawing method is consistent with Fig. 3: (a)$ t = 0 $; (b)$ t = 50 $; (c)$ t = 60 $; (d)$ t = 100 $; (e)$ t = 130 $; (f)$ t = 150 $; (g)$ t = 200 $; (h)$ t = 500 $.

    图 6  $\beta \text- \gamma$参数平面上的相图

    Figure 6.  Phase diagram on $\beta \text- \gamma$ parameter plane.

    图 7  APD恢复曲线总平均斜率$ {\bar \lambda _{{\text{ T}}}} $随参数$ \beta , \gamma $变化的直方图

    Figure 7.  Histogram of total average slope of APD restitution curve varying with parameters $ \beta $ and $ \gamma $.

    图 8  不同参数(螺旋波态)下恢复曲线的平均斜率随时间变化 (a)$ \beta = 3 $, $ \gamma = 1 $(稳定); (b)$ \beta = 4 $, $ \gamma = 1 $(稳定); (c)$ \beta = 7 $, $ \gamma = 17 $(稳定); (d)$ \beta = 4 $, $ \gamma = 2 $(漫游); (e)$ \beta = 5 $, $ \gamma = 1 $(漫游); (f)$ \beta = 10 $, $ \gamma = 9 $(漫游); (g)$ \beta = 13 $, $ \gamma = 5 $(第一种破碎); (h)$ \beta = 18 $, $ \gamma = 11 $(第二种破碎); (i)$ \beta = 38 $, $ \gamma = 15 $(第三种破碎); (j)$ \beta = 19 $, $ \gamma = 19 $(总平均斜率小于1的破碎); (k)$ \beta = 31 $, $ \gamma = 5 $(消失); (l)$ \beta = 32 $, $ \gamma = 8 $(消失)

    Figure 8.  Evolution of the average slope of the restitution curve for different parameters (spiral wave states): (a)$ \beta = 3 $, $ \gamma = 1 $(stable); (b)$ \beta = 4 $, $ \gamma = 1 $(stable); (c)$ \beta = 7 $, $ \gamma = 17 $(stable); (d)$ \beta = 4 $, $ \gamma = 2 $(meandering); (e)$ \beta = 5 $, $ \gamma = 1 $(meandering); (f)$ \beta = 10 $, $ \gamma = 9 $(meandering); (g)$ \beta = 13 $, $ \gamma = 5 $(first type of breakup); (h)$ \beta = 18 $, $ \gamma = 11 $(second type of breakup); (i)$ \beta = 38 $, $ \gamma = 15 $(third type of breakup); (j)$ \beta = 19 $, $ \gamma = 19 $(breakup with total average slope less than 1); (k)$ \beta = 31 $, $ \gamma = 5 $(disappear); (l)$ \beta = 32 $, $ \gamma = 8 $(disappear).

    图 9  在参数$ \alpha = 40 $, $ \gamma = 19 $, $ \beta = 19 $下不同时刻的膜电位斑图, 作图方式与图3相同 (a)$ t = 0 $; (b)$ t = 27 $; (c)$ t = 37 $; (d)$ t = 40 $; (e)$ t = 57 $; (f)$ t = 80 $; (g)$ t = 90 $; (h)$ t = 113 $; (i)$ t = 1900 $

    Figure 9.  Patterns of the membrane potential at different time moments for $ \alpha = 40 $, $ \gamma = 19 $ and $ \beta = 19 $. The drawing method is consistent with Fig. 3: (a)$ t = 0 $; (b)$ t = 27 $; (c)$ t = 37 $; (d)$ t = 40 $; (e)$ t = 57 $; (f)$ t = 80 $; (g)$ t = 90 $; (h)$ t = 113 $; (i)$ t = 1900 $.

    图 10  在不同$ {n_0} $情况下$\beta \text- \alpha$参数平面上的相图 (a)$ {n_0} = 25 $; (b)$ {n_0} = 40 $; (c)$ {n_0} = 55 $.

    Figure 10.  Phase diagram on $\beta \text- \alpha$ parameter plane for different values of $ {n_0} $: (a)$ {n_0} = 25 $; (b)$ {n_0} = 40 $; (c)$ {n_0} = 55 $.

  • [1]

    Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851Google Scholar

    [2]

    Frisch T, Rica S, Coullet P, Gilli J M 1994 Phys. Rev. Lett. 72 1471Google Scholar

    [3]

    Winfree A T 1972 Science 175 634Google Scholar

    [4]

    Gorelova N A, Bures J 1983 J. Neurobiol. 14 353Google Scholar

    [5]

    Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978Google Scholar

    [6]

    Pandit S V, Jalife J 2013 Circ. Res. 112 849Google Scholar

    [7]

    Narayan S M, Krummen D E, Rappel W J 2012 J. Cardiovasc. Electr. 23 447Google Scholar

    [8]

    Lip G Y H, Fauchier L, Freedman S B, Gelder I V, Natale A, Gianni C, Nattel S, Potpara T, Rienstra M, Tse H F, Lane D A 2016 Nat. Rev. Dis. Primers 2 16016Google Scholar

    [9]

    Gray R A, Jalife J, Panfilov A V, Baxter W T, Cabo C, Davidenko J M, Pertsov A M 1995 Science 270 1222Google Scholar

    [10]

    Christoph J, Chebbok M, Richter C, Schetelig J S, Bittihn P, Stein S, Uzelac I, Fenton F H 2018 Nature 555 667Google Scholar

    [11]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349Google Scholar

    [12]

    Kinoshita S, Iwamoto M, Tateishi K, Suematsu N J, Ueyama D 2013 Phys. Rev. E 87 062815Google Scholar

    [13]

    Luther S, Fenton F H, Kornreich B G, Squires A, Bittihn P, Hornung D 2011 Nature 475 235Google Scholar

    [14]

    潘军廷, 何银杰, 夏远勋, 张宏 2020 物理学报 69 080503Google Scholar

    Pan J T, He Y J, Xia Y X, Zhang H 2020 Acta Phys. Sin. 69 080503Google Scholar

    [15]

    Fenton F H, Cherry E M, Hastings H M, Evans S J 2002 Chaos 12 852Google Scholar

    [16]

    Ng G A 2017 Pharmacol. Therapeut. 176 1Google Scholar

    [17]

    Rosenbaum D S, Kaplan D T, Kanai A, Jackson L, Garan H, Cohen R J, Salama G 1991 Circulation 84 1333Google Scholar

    [18]

    Banville I, Gray R A 2002 J. Cardiovasc. Elect. 13 1141Google Scholar

    [19]

    Berger R D 2004 Circ. Res. 94 567Google Scholar

    [20]

    Qu Z, Weiss J N 2015 Annu. Rev. Physiol. 77 29Google Scholar

    [21]

    Vandersickel N, Defauw A, Dawyndt P, Panflov A V 2016 Sci. Rep. 6 29397Google Scholar

    [22]

    Avula U M R, Abrams J, Katchman A, Zakharov S, Mironov S, Bayne J, Roybal D, Gorti A 2019 Jci Insight 5 e128765Google Scholar

    [23]

    Handa B S, Lawal S, Wright I J, Li X, García J C, Mansfield C, Chowdhury R A, Peters N S 2019 Front. Cardiovasc. Med. 6 34Google Scholar

    [24]

    Zheng Y, Wei D, Zhu X, Chen W, Fukuda K, Shimokawa H 2015 Comput. Biol. Med. 63 261Google Scholar

    [25]

    Garfinkel A, Kim Y H, Voroshilovsky O, Qu Z, Kil J R, Lee M H, Karagueuzian H S, Weiss J N, Chen P S 2000 Proc. Natl. Acad. Sci. U. S. A. 97 6061Google Scholar

    [26]

    Zhang N, Luo Q, Jin Q, Han Y, Huang S, Wei Y, Lin C, Chen K, Shen W, Wu L 2020 Cardiovasc. Drugs Ther. 34 323Google Scholar

    [27]

    Qu Z, Garfinkel A, Chen P S, Weiss J N 2000 Circulation 102 1664Google Scholar

    [28]

    Franz M R, Jamal S M, Narayan S M 2012 Europace 14 v58Google Scholar

    [29]

    Alonso S, Bär M, Echebarria B 2016 Rep. Prog. Phys. 79 096601Google Scholar

    [30]

    Clayton R H, Taggart P 2005 Biomed. Eng. Online 4 54Google Scholar

    [31]

    Nash M P, Bradley C P, Sutton P M, Clayton R H, Kallis P, Hayward M P, Paterson D J, Taggart P 2006 Exp. Physiol. 91 339Google Scholar

    [32]

    Bub G, Shrier A, Glass L 2005 Phys. Rev. Lett. 94 028105Google Scholar

    [33]

    Deng M Y, Dai J Y, Zhang X L 2015 Chin. Phys. B 24 090503Google Scholar

    [34]

    张学良, 谭惠丽, 唐国宁, 邓敏艺 2017 物理学报 66 200501Google Scholar

    Zhang X L, Tan H L, Tang G N, Deng M Y 2017 Acta Phys. Sin. 66 200501Google Scholar

    [35]

    Lin Y T, Chang E T Y, Eatock J, Galla T, Clayton R H 2017 J. R. Soc. Interface 14 20160968Google Scholar

    [36]

    Pak H N, Hong S J, Hwang G S, Lee H S, Park S W 2004 J. Cardiovasc. Electr. 15 1357Google Scholar

    [37]

    欧阳颀 2001 物理 30 30

    Ouyang Q 2001 Physics 30 30

  • [1] Wang Peng, Li Qian-Yun, Huang Zhi-Jing, Tang Guo-Ning. Spontaneous formation of ordered waves in chaotic neuronal network with excitory-inhibitory connections. Acta Physica Sinica, 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [2] Wang Peng, Li Qian-Yun, Tang Guo-Ning. Spontaneous generation of spiral wave in the array of Hindmarsh-Rose neurons. Acta Physica Sinica, 2018, 67(3): 030502. doi: 10.7498/aps.67.20172140
    [3] Liang Jing-Yun, Zhang Li-Li, Luan Xi-Dao, Guo Jin-Lin, Lao Song-Yang, Xie Yu-Xiang. Multi-section cellular automata model of traffic flow. Acta Physica Sinica, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [4] Xu Ying, Wang Chun-Ni, Jin Wu-Yin, Ma Jun. Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling. Acta Physica Sinica, 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [5] Qiao Cheng-Gong, Li Wei-Heng, Tang Guo-Ning. Study on the effect of delayed recovery of extracellular potassium ion concentration on spiral wave. Acta Physica Sinica, 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [6] Yong Gui, Huang Hai-Jun, Xu Yan. A cellular automata model of pedestrian evacuation in rooms with squared rhombus cells. Acta Physica Sinica, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [7] Zhao Long, Yang Ji-Ping, Zheng Yan-Hong. Modulation of nonlinear coupling on the synchronization induced by linear coupling. Acta Physica Sinica, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [8] Ma Jun, Xie Zhen-Bo, Chen Jiang-Xing. Numerical study of the death and breakup of spiral wave in the networks of thermosensitive neurons. Acta Physica Sinica, 2012, 61(3): 038701. doi: 10.7498/aps.61.038701
    [9] Tian Chang-Hai, Deng Min-Yi, Kong Ling-Jiang, Liu Mu-Ren. Cellular automaton simulation with directed small-world networks for the dynamical behaviors of spiral waves. Acta Physica Sinica, 2011, 60(8): 080505. doi: 10.7498/aps.60.080505
    [10] Yue Hao, Shao Chun-Fu, Yao Zhi-Sheng. Pedestrian evacuation flow simulation based on cellular automata. Acta Physica Sinica, 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [11] Li Qing-Ding, Dong Li-Yun, Dai Shi-Qiang. Investigation on traffic bottleneck induce by bus stopping with a two-lane cellular automaton model. Acta Physica Sinica, 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [12] Dai Yu, Tang Guo-Ning. Some origins of the low excitability of a discrete excitable medium. Acta Physica Sinica, 2009, 58(3): 1491-1496. doi: 10.7498/aps.58.1491
    [13] Zhang Li-Sheng, Deng Min-Yi, Kong Ling-Jiang, Liu Mu-Ren, Tang Guo-Ning. The cellular automaton model for the nonlinear waves in the two-dimensional excitable media. Acta Physica Sinica, 2009, 58(7): 4493-4499. doi: 10.7498/aps.58.4493
    [14] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [15] Yue Hao, Shao Chun-Fu, Chen Xiao-Ming, Hao He-Rui. Simulation of bi-directional pedestrian flow based on cellular automata model. Acta Physica Sinica, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [16] Zhang Wen-Zhu, Yuan Jian, Yu Zhe, Xu Zan-Xin, Shan Xiu-Ming. Study of the global behavior of wireless sensor networks based on cellular automata. Acta Physica Sinica, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [17] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [18] Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [19] Mou Yong-Biao, Zhong Cheng-Wen. Cellular automaton model of traffic flow based on safety driving. Acta Physica Sinica, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [20] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
Metrics
  • Abstract views:  4250
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2022
  • Accepted Date:  25 February 2022
  • Available Online:  29 May 2022
  • Published Online:  05 June 2022

/

返回文章
返回