-
Highly dynamic solar eruptive activities occurring over the corona and transition region, triggered off by magnetic field reconnection, are the driving source of disastrous space weather, and the space imaging and spectroscopic measurements of solar eruptive activities are a key data source for accurate space weather forecasting. The He II 30.4 nm resonance line comes from the Lyman α transition of singly ionized helium, which has an anomalous intensity, an order of magnitude higher than the intensities of other transition region lines. In this paper, we propose and design a two-dimensional spectroscopic tomographic imaging instrument operating at He II 30.4 nm wavelength to make up for the shortcomings of conventional solar extreme ultraviolet imager and imaging spectrometer, and adopt a slitless three-order (–1, 0, +1) simultaneous diffraction imaging configuration with a single snapshot to achieve two-dimensional spectroscopy instantaneous imaging with a large field of view. Owing to the confusion of spatial and spectral information of the three orders of images, the three-dimensional data cube I (x, y, λ) of the observed target is reconstructed using a spectral data inversion algorithm with a limited tomographic projection angle.
-
Keywords:
- solar extreme ultraviolet /
- tomographic imaging /
- imaging spectrometer /
- spectral data inversion
[1] 王水, 魏奉思 2007 地球物理学进展 22 1025Google Scholar
Wang S, Wei F S 2007 Prog. Geophys. 22 1025Google Scholar
[2] 汪景琇, 季海生 2013 中国科学: 地球科学 43 883Google Scholar
Wang J X, Ji H S 2013 Sci. China Earth Sci. 43 883Google Scholar
[3] Hurford G J, Schmahl E J, Schwartz R A, Conway A J, Aschwanden M J, Csillaghy A, Dennis B R, Johns-Krull C, Krucker S1, Lin R P, Mctiernan J, Metcalf T R, Sato J, Smith D M 2002 Solar Phys. 210 61Google Scholar
[4] Milligan R O, Gallagher P T, Mathioudakis M, Bloomfield D S, Keenan F P, Schwartz R A 2006 Astrophys. J. 638 L117Google Scholar
[5] Underwood J H, Neupert W M 1974 Solar Phys. 35 241Google Scholar
[6] Tousey R, Bartoe J D F, Brueckner G E, Purcell J D 1977 Appl. Opt. 16 4Google Scholar
[7] Neupert W M, Epstein G L, Thomas R J, Thompson W T 1992 Solar Physics 137 87Google Scholar
[8] Brosius W, Davila J M, Thomas A. 1998 Astrophys. J. Suppl. Ser. 119 255Google Scholar
[9] Brosius J W, Thomas R J, Davila J M 2000 Astrophys. J. 543 1016Google Scholar
[10] Curdt W, Brekke P, Feldman U, Wilhelm K, Dwivedi B N, Schuhle U, Lemaire P 2001 Astron. Astrophys. 375 591Google Scholar
[11] Thompson W T, Brekke P 2000 Solar Phys. 195 45Google Scholar
[12] Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Solar Phys. 243 3Google Scholar
[13] Culhane J L, Harra L K, Doschek G A, Mariska J T, Watanabe T, Hara H 2005 Adv. Space Res. 36 1494Google Scholar
[14] Pesnell W D, Thompson B J, Chamberlin P C 2012 Solar Phys. 275 3Google Scholar
[15] Lemen J R, Title A M, Akin D J, et al. 2012 Solar Phys. 275 17Google Scholar
[16] Müller D, Cyr O C S, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar
[17] Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar
[18] 甘为群, 黄宇, 颜毅华 2012 中国科学: 物理学 力学 天文学 42 1274Google Scholar
Gan W Q, Huang Y, Yan Y H 2012 Sci. Sin. Phys. Mech. Astron. 42 1274Google Scholar
[19] 甘为群, 颜毅, 华黄宇 2019 中国科学: 物理学 力学 天文学 49 059602Google Scholar
Gan W Q, Yan Y H, Huang Y 2019 Sci. Sin. Phys. Mech. Astron. 49 059602Google Scholar
[20] Tu C Y, Schwenn R, Donovan E, Marsch E, Wang J S, Xia L D, Zhang Y M 2008 Adv. Space Res. 41 190Google Scholar
[21] Wang J S, Zhang J 2007 Adv. Space Res. 40 1770Google Scholar
[22] Zanna G D, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar
-
表 1 层析成像光谱仪的技术指标和系统参数表
Table 1. Specifications and system parameters for tomographic imaging spectrometer.
参数 取值 Specifications Spectral range/nm 29.4 — 31.4 FOV/arcmin2 10 arcmin × 10 arcmin Spectral resolution/nm 0.003 Spatial resolution/arcsec 0.42 Line-of-sight velocity/(km·s–1) > 29.61 System focal length/mm 6500 Pixel size/μm 13 Optical volume/mm3 1050 mm×
330 mm×60 mmTelescope design RT/mm 1888.190 Conic –1 Δ/mm 80 Spectral imaging system design 1/d0/mm–1 3200 rA/mm 150 β 6.87× i/(°) 5.56 R/mm 263.514 ρ/mm 259.940 b2 0.0938 Ruling area/mm2 20 mm × 20 mm 表 2 层析成像光谱仪的数据重建算法SMART
Table 2. Data reconstruction algorithm SMART for tomography imaging spectrometer.
Smooth multiplicative algebraic reconstruction technique 1. Initial guess: $G(x, \lambda ) = {I_0}(x){I_\infty }(\lambda )/N$ 2. Projection: $[{I'_{ - 1}}, {I'_0}, {I'_{ + 1}}, {I'_\infty }] = P[G]$ 3. Correction: $\begin{aligned} G = G{\left[ {\frac{ { {I_{ - 1} }(x - \lambda )} }{ { { {I'}_{ - 1} }(x - \lambda )} } } \right]^\gamma }{\left[ {\frac{ { {I_0}(x)} }{ { { {I'}_0}(x)} } } \right]^\gamma }\\ \times{\left[ {\frac{ { {I_{ + 1} }(x + \lambda )} }{ { { {I'}_{ + 1} }(x + \lambda )} } } \right]^\gamma }{\left[ {\frac{ { {I_\infty }(\lambda )} }{ { { {I'}_\infty }(\lambda )} } } \right]^\gamma }\end{aligned}$ 4. Smoothing: $G = G \otimes \displaystyle\frac{1}{ {1 + 2 t + 2 s} }\left[ {\begin{array}{*{20}{c} } 0& t & 0 \\ s& 1 & s \\ 0& t & 0 \end{array} } \right]$ 5. Reprojection: $[{I'_{ - 1}}, {I'_0}, {I'_{ + 1}}, {I'_\infty }] = P[G]$ 6. Evaluate goodness of fit: $\chi _m^2 = 1 + \displaystyle\sum\limits_{x, y} \dfrac{(I'_m - I_m)^2}{N}$ 7. Adjust smoothing parameters: $t = \dfrac{t}{\chi _{ - 1}^2\chi _{ + 1}^2},~~ s = \dfrac{s}{\chi _0^2}$ 8. Loop to step 3 表 3 反演效果评价指标
Table 3. Evaluation indicators for the reconstruction
Quantized indicators τ k δRMS Parametric inversion 0.862 0.668 0.294 -
[1] 王水, 魏奉思 2007 地球物理学进展 22 1025Google Scholar
Wang S, Wei F S 2007 Prog. Geophys. 22 1025Google Scholar
[2] 汪景琇, 季海生 2013 中国科学: 地球科学 43 883Google Scholar
Wang J X, Ji H S 2013 Sci. China Earth Sci. 43 883Google Scholar
[3] Hurford G J, Schmahl E J, Schwartz R A, Conway A J, Aschwanden M J, Csillaghy A, Dennis B R, Johns-Krull C, Krucker S1, Lin R P, Mctiernan J, Metcalf T R, Sato J, Smith D M 2002 Solar Phys. 210 61Google Scholar
[4] Milligan R O, Gallagher P T, Mathioudakis M, Bloomfield D S, Keenan F P, Schwartz R A 2006 Astrophys. J. 638 L117Google Scholar
[5] Underwood J H, Neupert W M 1974 Solar Phys. 35 241Google Scholar
[6] Tousey R, Bartoe J D F, Brueckner G E, Purcell J D 1977 Appl. Opt. 16 4Google Scholar
[7] Neupert W M, Epstein G L, Thomas R J, Thompson W T 1992 Solar Physics 137 87Google Scholar
[8] Brosius W, Davila J M, Thomas A. 1998 Astrophys. J. Suppl. Ser. 119 255Google Scholar
[9] Brosius J W, Thomas R J, Davila J M 2000 Astrophys. J. 543 1016Google Scholar
[10] Curdt W, Brekke P, Feldman U, Wilhelm K, Dwivedi B N, Schuhle U, Lemaire P 2001 Astron. Astrophys. 375 591Google Scholar
[11] Thompson W T, Brekke P 2000 Solar Phys. 195 45Google Scholar
[12] Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Solar Phys. 243 3Google Scholar
[13] Culhane J L, Harra L K, Doschek G A, Mariska J T, Watanabe T, Hara H 2005 Adv. Space Res. 36 1494Google Scholar
[14] Pesnell W D, Thompson B J, Chamberlin P C 2012 Solar Phys. 275 3Google Scholar
[15] Lemen J R, Title A M, Akin D J, et al. 2012 Solar Phys. 275 17Google Scholar
[16] Müller D, Cyr O C S, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar
[17] Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar
[18] 甘为群, 黄宇, 颜毅华 2012 中国科学: 物理学 力学 天文学 42 1274Google Scholar
Gan W Q, Huang Y, Yan Y H 2012 Sci. Sin. Phys. Mech. Astron. 42 1274Google Scholar
[19] 甘为群, 颜毅, 华黄宇 2019 中国科学: 物理学 力学 天文学 49 059602Google Scholar
Gan W Q, Yan Y H, Huang Y 2019 Sci. Sin. Phys. Mech. Astron. 49 059602Google Scholar
[20] Tu C Y, Schwenn R, Donovan E, Marsch E, Wang J S, Xia L D, Zhang Y M 2008 Adv. Space Res. 41 190Google Scholar
[21] Wang J S, Zhang J 2007 Adv. Space Res. 40 1770Google Scholar
[22] Zanna G D, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar
Catalog
Metrics
- Abstract views: 5024
- PDF Downloads: 52
- Cited By: 0