-
With the continuous development of mobile internet, cloud computing, Internet of things, and 5G, the annual growth rate of the existing communication transmission capacity is far from meeting the growing demand. The gain bandwidth of L-band erbium-doped fiber amplification (EDFA) has become the main factor for limiting the bandwidth extension. Owing to its negative effect on the gain and noise figure after 1580 nm, the excited state absorption (ESA) is regarded as a key factor that directly limits the L-band expansion of EDFA. If the ESA coefficient has the same value as the stimulated emission coefficient, the net gain coefficient becomes zero. At the same time, signal amplification cannot be obtained no matter how the pump power and fiber length are adjusted. Improvements from the perspective of erbium-doped fibers, such as changing the host glass and doping components, are extremely beneficial to L-band extension based on simple amplifier configurations. In the present study, an erbium-doped fiber extended to the L-band is fabricated by the modified chemical vapor deposition technology. The saturation curve of the fiber is measured, and then the rate of clustering is obtained. In addition, the absorption coefficient and emission coefficient of the fiber are tested by the truncation method, then the effect of ESA is studied. We demonstrate that modulating the ratio of P to Al in the fiber core has a significant inhibitory effect on the ESA of Er3+. To better characterize the amplification performance of the fiber, a single-stage and a multi-stage amplifier system are built respectively. At an input signal injection with a power value of –9 dBm, the fiber exhibits a gain of 10.5 dB with a maximum noise figure of 5.9 dB at 1625.3 nm, based on a single-stage amplifier system under a 980 nm forward-pumping excitation. It indicates that the amplification performance of the fiber in the long-wavelength has improved, which is consistent with the conclusion of the suppression effect on the ESA. By optimizing the fiber length for the first, second and third stage to 19 m, 26 m and 10 m, respectively, a gain of 23.4 dB is obtained at the longest wavelength. The maximum noise figure is 6.3 dB, and the saturation output power is 24.8 dBm. In the meantime, the pump conversion efficiency arrives at 13%. This is the first report on the L-band extended silicate-based erbium-doped fiber that can achieve long-wavelength gain extension to 1625.3 nm.
1. 引 言
掺铒光纤放大器(erbium-doped fiber amplification, EDFA)的出现促进了密集波分复用技术的应用和发展, 极大地提高了光纤通信系统的数据传输能力, 开启了大容量光纤通信的新纪元[1]. 然而, 随着移动互联、云计算和物联网的不断发展以及5G的升级换代, 光纤通信容量需求极速增长, 现有密集波分复用光纤通信系统正面临巨大的扩容压力. 而进一步提升传输容量存在单纤香农极限和放大器可用带宽资源等技术限制[2,3], 如何实现光纤通信系统潜在传输容量的进一步提升成为了当务之急.
EDFA作为现有商用光纤通信系统中的关键器件, 其增益带宽已成为限制1.5 μm波段通信传输容量发展的主要原因, 因此扩展系统传输带宽进而增加信道数量成为最直接的方案. 目前C波段已经实现48 nm (1524—1572 nm)的增益, 但L波段只能实现36 nm (1575—1611 nm)的增益, 扩展L波段EDFA的增益带宽是最直接有效的方法. 近年来, 研究人员们开始对扩展L波段增益带宽进行研究. 2020年, 加拿大拉瓦尔大学提出采用C波段泵浦的改进方案[4], 实现了泵浦转换效率(pump conversion efficiency, PCE)的提升, 但对于带宽扩展的作用十分有限. 2017年, 土耳其中东科技大学提出放大自发辐射(amplified spontaneous emission, ASE)再注入的系统结构改进方案[5], 实现了单级双向泵浦结构下EDFA增益和噪声性能的进一步提升. 但带宽仅扩展到1610 nm, 同时系统复杂性大大增加. 此外还有引入增益平坦滤波器[6]和组合多个放大器[7]等系统结构上的改进, 但带宽扩展效果均不理想. 掺铒光纤作为EDFA的重要增益介质, 如果能从增益光纤角度改进, 那么可以在简单的放大器配置基础上实现更好的性能[8]. 寻求新型基质材料或其他掺杂组分进而实现L波段扩展逐步成为研究热点, 表1整理了国内外的研究进展[6,9-18].
表 1 国内外L波段扩展EDFA研究进展Table 1. Research progress of L-band extended EDFA.年份 机构 基质材料 掺杂离子 扩展波长/nm 文献 1997 NTT (Japan) fluoride Er 1620.0 [9] 2001 Corning (USA) antimony silicate Er 1620.0 [10] 2002 NTT (Japan) tellurite Er 1610.0 [11] 2002 KDDI (Japan) silicate Er/P/Al 1616.1 [12] 2003 PolyU (China HK) bismuthate Er/La 1620.0 [13] 2002 Corning (USA) silicate Er/Al 1620.0 [14] 2005 BJTU (China) silicate Er/Al/Mg 1610.0 [15] 2008 NTT (Japan) silicate Er/P 1619.6 [6] 2010 Central Glass and Ceramic Research Institute (India) silicate Er/Al/Zr/Y 1605.0 [16] 2021 HUST (China) silicate Er/Ce 1623.0 [17] 2021 HUST (China) silicate Er/Yb/P 1623.0 [18] 2022 HUST (China) silicate Er/P/Al 1625.3 This work 本研究基于改进的化学气相沉积(modified chemical vapor deposition, MCVD)工艺并结合溶液掺杂技术, 通过对共掺离子P和Al的浓度比例进行调控, 成功制备出基于石英基的L波段扩展掺铒光纤. 对该光纤的基本性能进行测试和分析, 并结合P/Al掺杂对激光态吸收的抑制作用进行了讨论. 分别搭建了单级和多级宽带放大测试系统, 并对光纤的L波段扩展增益性能进行了验证, 结果表明该光纤实现了1575.0—1625.3 nm的L波段扩展放大.
2. L波段扩展原理
2.1 激发态吸收
激发态吸收(excited state absorption, ESA)过程影响着放大器在1580 nm后的增益和噪声特性, 一直以来被视为L波段扩展的直接限制因素. 如图1所示, Er3+吸收980 nm泵浦光跃迁至激发态能级4I11/2后, 因非辐射跃迁迅速降落至亚稳态能级4I13/2. 亚稳态能级寿命约为10 ms, 且4I13/2能级与4I9/2能级的能量差极接近L波段信号. 当L波段掺铒光纤掺杂浓度较高时, 聚集在亚稳态能级上的铒离子除向下跃迁产生ASE外, 还会额外吸收信号光子向更高的4I9/2能级跃迁导致激发态吸收. 此时Er3+对应于4I13/2→4I15/2的受激发射光谱和对应于4I13/2→4I9/2的激发态吸收光谱存在重叠. 由于在McCumber理论模型[19]中, 推导计算得到的是近似认为不受信号激发态吸收影响的发射系数, 因此其在计算掺铒光纤发射系数时, 所得到的曲线在C波段可与实际测得发射系数高度重合. 然而考虑现实情况, 尤其是在L波段EDFA中, 此时实际发射系数在1580 nm后与计算发射系数存在差异性, 差值即可认为是由信号激发态吸收所影响, 故ESA系数表达式为
(1) (2) (3) 其中,
为ESA系数; 为根据McCumber原理用(2)式推导得到的发射系数; 为光纤实际测得的增益系数; 为光纤实际测得的吸收系数; 为将铒离子由4I15/2能级激发至4I13/2能级所需要的能量; h为普朗克常数; v为光子频率; kB为玻尔兹曼常数; T为绝对温度. 此外, 为将ESA的影响与EDFA在L波段放大性能结合分析, 本文定义ESA作用程度一值. 其中, 是光纤ESA效应的起始作用波长, 是工作范围内的最长波长值, ESA作用程度(ED)即是在EDFA工作波长内对ESA系数进行积分, 用以表征EDFA积累的ESA作用程度. 由(1)式可知当光纤理论发射系数与ESA系数相等时, 光纤净增益系数为零, 意味着此时无论如何调节泵浦功率和光纤长度均无法获得信号放大. 因此要实现L波段增益扩展, 必须对ESA进行抑制. 通过引入共掺离子来调整铒离子的配位场, 进而影响能带及其子能级压缩, 实现激发态吸收的调控或抑制.2.2 光纤基本参数
本文所用光纤是由MCVD工艺结合溶液掺杂技术制备, 通过Photon Kinetics公司的预制棒折射率分布测试仪(PK2650)测得预制棒折射率剖面见图2(a). 考虑到通信用单模光纤数值孔径的要求, 结合纤芯尺寸与光纤模场直径的关系, 最终设计得到光纤的纤芯/包层尺寸为5.5/124.0 μm, 光纤截面图如图2(b)所示. 采用 Photon Kinetics公司的光纤综合特性测试仪(PK2500)测得该光纤在980 nm处的泵浦光吸收系数为10.57 dB/m, 在1200 nm处的背景损耗为18 dB/m. 采用标准截断法测试该光纤在工作波长范围内的吸收、发射系数, 具体基本参数见表2. 利用电子探针X射线显微分析仪对其组分进行分析, 在铒离子掺杂浓度为0.29% (后文提到的“浓度”均指铒离子的质量分数)基础上, 通过将光纤组分中P与Al的比例调控至2.6, 实现对ESA明显的抑制效果. 接着测得其饱和曲线, 并由此计算得到团簇率.
表 2 光纤基本参数Table 2. Basic characteristics of fiber.数值孔径 吸收系数@980 nm dB/m 吸收系数@1536 nm dB/m 发射系数@1536 nm dB/m 背景损耗@1200 nm dB/m 团簇率/% 0.19 10.57 48.20 45.60 18.00 2.42 3. 实验与结果
3.1 实验装置
本文用于测量L波段扩展掺铒光纤放大性能的系统结构如图3(a)所示. 由Amonics宽带光源结合光交叉波分复用器产生的功率为–9 dBm, 波长范围在1575.0—1625.3 nm的信号作为原始信号. 功率为530 mW的980 nm泵浦光经由波分复用器与信号光一同耦合进入掺铒光纤, 并采用光谱分析仪测量其放大后的输出信号功率.
为更好地表征掺铒光纤用于多级系统时的放大性能, 在前向泵浦的单级结构基础上搭建了如图3(b)所示的三级系统, 泵浦源均采用980 nm半导体激光器. 此时, 一级系统充当预放级作用. 相应地, 在二级采用前向泵浦(泵浦功率为600 mW)的基础上, 增加双向泵浦方案的三级结构(前后向泵浦功率分别为600 mW和450 mW)以进一步放大信号, 从而使系统整体达到噪声低、增益高、输出功率大的效果. 各级之间引入隔离器以阻挡后向ASE进入前一级系统, 这样既可以使得前一级处于高反转的低噪声放大状态, 又可以防止积累的后向ASE功率过大, 损坏器件.
3.2 实验结果
掺铒光纤在单级结构下的L波段光放大性能结果如图4(a)所示. 通过调整泵浦功率和光纤长度, 在19 m光纤时获得了较为平坦的增益谱. 实验结果显示, 该光纤在1625.3 nm波长处增益 (Gain) 达10.5 dB, 最大噪声指数 (NF) 为5.9 dB. 根据(3)式计算可得, 在其工作波长范围内本光纤ESA作用强度为5.21. 由此可以推测出在长波范围内, 本文光纤的理论发射系数与ESA系数应仍然保持较大差值, 此时增益系数下降幅度较缓, 表明ESA作用被明显抑制. 光纤在长波方向上的增益性能有所提升, 这表明石英基掺铒光纤可以实现L波段扩展至1625.3 nm. 此外, 由于受系统光源工作波长限制, 通过(1)式可推算得到该光纤净增益系数为0时的波长值为1636 nm, 意味着该光纤支持直到1636 nm波长处的信号增益放大.
图4(b)为该光纤在多级系统结构下的L波段光放大特性. 考虑在多级系统中, 一级放大的噪声性能往往决定了系统整体的噪声水平. 综合衡量一级放大中噪声性能和C波段前向ASE功率水平两个因素, 将一级光纤长度优化至19 m. 二级和三级均为“主放”部分, 用以对信号进行再次放大, 因此均以最长波长处增益值达到最高为优化标准, 最终调整长度至二级为26 m, 三级为10 m. 结果显示此时光纤可在最长波长处实现增益为23.4 dB, 最大噪声指数为6.3 dB, 饱和输出功率为24.8 dBm, PCE达13%. 另外在光纤增益谱长波处未见明显的进一步衰减趋势, 表明理论上光纤可支持的20 dB增益带宽不止1575.0—1625.3 nm.
4. 讨 论
增加掺铒光纤掺杂浓度是L波段 EDFA最常见的实现方式, 但高浓度掺杂随之而来的问题是铒离子的大量聚集, 这为发生激发态吸收作用提供了充分条件. 当泵浦条件充分时, 随着掺铒浓度的增加, 更多的铒离子被激发到4I13/2能级上, 发生激发态吸收的概率大大增加. 因此, 如果能降低铒离子发生激发态吸收的概率, 或对激发态吸收谱进行调控, 理论上可以提升EDFA在L波段上的放大性能. 当光纤掺杂浓度上升时, 不得不聚集在一起的铒离子需要共享SiO2提供的非桥接氧以降低自身焓值. 通过引入P和Al, 可以形成Al—O—P桥键进而生成[AlPO4]–单元. [AlPO4]–通过破坏硅酸盐紧密的玻璃网络, 可以提供更多的非桥接氧并增加铒离子的附着位点, 实现其配位场的调节. 通过测量如图5(a)所示的饱和曲线, 计算得到该光纤的团簇率为2.42%, 进一步佐证引入共掺离子可以大幅度改善铒离子的聚集程度. 通过(3)式计算可得, 该光纤在工作波长(即图5(b)中阴影区域)内的ESA作用强度为5.210, 而图5(c)中常规L波段掺铒光纤的ESA作用强度为8.978. 结合图5(b)和图5(c)所示的ESA谱对比, 可以证明该共掺方式减少了铒离子向更高能级跃迁的概率, 激发态吸收得以抑制.
图 5 掺铒光纤参数对比结果 (a) 光纤饱和曲线; (b) 本文光纤吸收系数、发射系数和ESA系数谱; (c) 常规L波段掺铒光纤吸收系数、发射系数和ESA系数谱Fig. 5. Comparison of erbium-doped fiber basic parameters: (a) Saturation curve of fiber; (b) optical fiber absorption coefficient, emission coefficient and ESA coefficient spectrum in this paper; (c) spectrum of absorption coefficient, emission coefficient and ESA coefficient of conventional L-band erbium-doped fiber.另一方面, P的引入会在铒离子的不同位点产生配体电场效应变化[20], P=O键局部的微观结构会改变铒离子的配位场环境, 最终导致其能带产生不同程度的压缩. 其中, 基态与亚稳态间的能量差变化直接表现为铒离子吸收和发射峰值的红移现象. 如图5(b)和图5(c)所示, 常规商用铒纤的吸收和发射峰多位于1530 nm, 而本文制备的L波段扩展铒纤吸收和发射峰位于1536 nm处, 这有利于掺铒光纤放大器在L波段的放大性能. 相应地, 铒离子亚稳态与激发态之间的能级也会产生不同程度的压缩, 进而改变激发态吸收能级间所对应的能量差, 激发态吸收的峰值波长会因此发生相应红移, 该红移量相对掺铒光纤其发射系数在L波段边缘与激发态吸收谱的重叠量而言作用明显. 通过对比ESA系数谱还可发现, 本文光纤的ESA起始作用波长也由1580 nm相应红移至1592 nm. 最终光纤的增益谱测试结果与激发态吸收变化趋势一致, 理论分析与测得的光纤参数相符, 均表明通过引入P/Al可以抑制激发态吸收, 进而改善L波段EDFA在扩展带宽上的放大性能.
5. 结 论
抑制铒离子激发态吸收是实现L波段掺铒光纤放大器增益扩展的有效途径. 基于MCVD工艺结合溶液掺杂技术, 本文成功制备了L波段扩展掺铒光纤. 分析表明, 通过引入P和Al调节铒离子的配位场进而抑制激发态吸收, 有利于掺铒光纤实现L波段增益扩展. 在–9 dBm的输入信号功率下, 该光纤基于前向泵浦(泵浦功率530 mW)的单级放大结构, 在1625.3 nm波长处增益达10.5 dB, 最大噪声指数为5.9 dB. 基于三级放大结构, 在相同输入信号功率和2.1 W泵浦功率的条件下, 实现1625.3 nm处增益达23.4 dB, 饱和输出功率为24.8 dBm. 这表明L波段扩展硅基掺铒光纤可扩展至1625.3 nm, 该光纤对进一步扩展L波段增益带宽提供了强有力的可行方案.
[1] Peter J W, David T N, Andrew R C 2018 Optics Express 26 18
Google Scholar
[2] 余少华, 何炜 2020 中国科学: 信息科学 50 9
Yu S H, He W 2020 Science in China (Information Sciences) 50 9
[3] 阮江冉, 裴丽, 郑晶晶, 王建帅, 徐文轩, 李晶, 宁提纲 2022 光学学报 42 8
Google Scholar
Ruan J R, Pei L, Zheng J J, Wang J S, Xu W X, Li J, Ning T G 2022 Acta Opti. Sin. 42 8
Google Scholar
[4] Lei C M, Feng H L, Wang L X, Messaddeq Y, Larochelle S 2020 Optical Fiber Communication Conference & Exhibit California, United States, March 8–12, 2020 pW1C.2
[5] Durak F E, Altuncu A 2017 Optics Commun. 386 31
Google Scholar
[6] Masuda H, Miyamoto Y 2008 Electr. Lett. 44 1082
Google Scholar
[7] Fujiwara M, Koma R, Suzuki K I, Otaka A 2016 J. Lightwave Technol. 34 8
Google Scholar
[8] Amin M Z, Qureshi K K, Hossain M M 2019 Chin. Optics Lett. 17 1
Google Scholar
[9] Mori A, Ohishi Y, Yamada M, Ono H, Sudo S 2002 European Conference on Optical Communications Edinburgh, United Kingdom, September 22–25, 1997 p135
[10] Ellison A J G, Goforth D E, Samson B N, Minelly J D, Trentelman J P, McEnroe D L 2001 Optical Fiber Communication Conference & Exhibit California, United States, March 17, 2001 pTuA2
[11] Mori A, Sakamoto T, Kobayashi K, Shikamo K, Oikawa K, Hoshino K, Kanamori T, Ohishi Y, Shizumu M 2002 J. Lightwave Technol. 20 5
Google Scholar
[12] Yamashita T, Yoshida M, Tanaka H 2002 Optical Fiber Communication Conference & Exhibit California, United States, March 17, 2002 pThJ1
[13] Guan B O, Tam H Y, Liu S Y, Wai P K A, Sugimoto N 2003 IEEE Photonics Technol. Lett. 15 11
Google Scholar
[14] Li Q, Fortusini D, Benjamin S D, Qi G, Kelkar P V, da Silva V L 2002 Optical Fiber Communication Conference & Exhibit California, United States, March 17, 2002 pThJ4
[15] Fu Y J, Zheng K, Jian W, Jian S S 2005 Chin. Opt. Lett. 3 4
[16] Paul M C, Harun S W, Huri N A D, Hamzah A, Das S, Pal M, Bhzdra S K, Ahmad H, Yoo S, Kalita M P, Boyland A J, Sahu J K 2010 J. Lightwave Technol. 28 20
Google Scholar
[17] Lou Y, Chen Y, Gu Z M, Qiu Q, He L, Xing Y B, Peng J G, Li H Q, Chu Y B, Dai N L, Li J Y 2021 J. Lightwave Technol. 39 18
Google Scholar
[18] Chen Y, Lou Y, Gu Z M, Qiu Q, He L, Li W Z, Yin X K, Zhao X Y, Liu S K, Peng J G, Li H Q, Xing Y B, Chu Y B, Dai N L, Li J Y 2021 Optics Express. 46 23
Google Scholar
[19] McCumber D E 1964 Phys. Rev. 136 4A
Google Scholar
[20] Brow R K 2000 J. Non-Crystalline Solids 263 1
Google Scholar
期刊类型引用(7)
1. 郑晶晶,黄飞,詹军,童庆武. 关于400 Gbps DWDM技术大规模商用论证. 数字通信世界. 2024(01): 73-75 . 百度学术
2. 马鹏举,马伟鸣,陈英铭,柴文翠. 金尾矿综合回收技术研究进展. 化工矿物与加工. 2024(02): 47-53 . 百度学术
3. 李征,刘新雨,柯熙政. 光放大器原理及其发展. 激光杂志. 2024(05): 1-14 . 百度学术
4. 林漫冰,阮继宇,劳浩贤,钟力,汪松,董新永. 放大自发辐射辅助泵浦的L波段扩展掺铒光纤放大器. 激光与光电子学进展. 2024(13): 228-233 . 百度学术
5. 邹泳芳,董新永,巫智凯,文建湘,王廷云,汪松,王云才,秦玉文. C+L波段全覆盖高增益掺铒光纤放大器. 中国激光. 2024(18): 209-214 . 百度学术
6. 阮继宇,劳浩贤,林漫冰,钟力,汪松,董新永. 高增益二级双程L波段扩展掺铒光纤放大器. 光学学报. 2023(22): 144-149 . 百度学术
7. 武洋,潘蓉,杨鹏,衣永青. 基于气相沉积法的掺铒光纤制备与温度特性. 激光技术. 2023(06): 841-845 . 百度学术
其他类型引用(6)
-
图 5 掺铒光纤参数对比结果 (a) 光纤饱和曲线; (b) 本文光纤吸收系数、发射系数和ESA系数谱; (c) 常规L波段掺铒光纤吸收系数、发射系数和ESA系数谱
Figure 5. Comparison of erbium-doped fiber basic parameters: (a) Saturation curve of fiber; (b) optical fiber absorption coefficient, emission coefficient and ESA coefficient spectrum in this paper; (c) spectrum of absorption coefficient, emission coefficient and ESA coefficient of conventional L-band erbium-doped fiber.
表 1 国内外L波段扩展EDFA研究进展
Table 1. Research progress of L-band extended EDFA.
年份 机构 基质材料 掺杂离子 扩展波长/nm 文献 1997 NTT (Japan) fluoride Er 1620.0 [9] 2001 Corning (USA) antimony silicate Er 1620.0 [10] 2002 NTT (Japan) tellurite Er 1610.0 [11] 2002 KDDI (Japan) silicate Er/P/Al 1616.1 [12] 2003 PolyU (China HK) bismuthate Er/La 1620.0 [13] 2002 Corning (USA) silicate Er/Al 1620.0 [14] 2005 BJTU (China) silicate Er/Al/Mg 1610.0 [15] 2008 NTT (Japan) silicate Er/P 1619.6 [6] 2010 Central Glass and Ceramic Research Institute (India) silicate Er/Al/Zr/Y 1605.0 [16] 2021 HUST (China) silicate Er/Ce 1623.0 [17] 2021 HUST (China) silicate Er/Yb/P 1623.0 [18] 2022 HUST (China) silicate Er/P/Al 1625.3 This work 表 2 光纤基本参数
Table 2. Basic characteristics of fiber.
数值孔径 吸收系数@980 nm dB/m 吸收系数@1536 nm dB/m 发射系数@1536 nm dB/m 背景损耗@1200 nm dB/m 团簇率/% 0.19 10.57 48.20 45.60 18.00 2.42 -
[1] Peter J W, David T N, Andrew R C 2018 Optics Express 26 18
Google Scholar
[2] 余少华, 何炜 2020 中国科学: 信息科学 50 9
Yu S H, He W 2020 Science in China (Information Sciences) 50 9
[3] 阮江冉, 裴丽, 郑晶晶, 王建帅, 徐文轩, 李晶, 宁提纲 2022 光学学报 42 8
Google Scholar
Ruan J R, Pei L, Zheng J J, Wang J S, Xu W X, Li J, Ning T G 2022 Acta Opti. Sin. 42 8
Google Scholar
[4] Lei C M, Feng H L, Wang L X, Messaddeq Y, Larochelle S 2020 Optical Fiber Communication Conference & Exhibit California, United States, March 8–12, 2020 pW1C.2
[5] Durak F E, Altuncu A 2017 Optics Commun. 386 31
Google Scholar
[6] Masuda H, Miyamoto Y 2008 Electr. Lett. 44 1082
Google Scholar
[7] Fujiwara M, Koma R, Suzuki K I, Otaka A 2016 J. Lightwave Technol. 34 8
Google Scholar
[8] Amin M Z, Qureshi K K, Hossain M M 2019 Chin. Optics Lett. 17 1
Google Scholar
[9] Mori A, Ohishi Y, Yamada M, Ono H, Sudo S 2002 European Conference on Optical Communications Edinburgh, United Kingdom, September 22–25, 1997 p135
[10] Ellison A J G, Goforth D E, Samson B N, Minelly J D, Trentelman J P, McEnroe D L 2001 Optical Fiber Communication Conference & Exhibit California, United States, March 17, 2001 pTuA2
[11] Mori A, Sakamoto T, Kobayashi K, Shikamo K, Oikawa K, Hoshino K, Kanamori T, Ohishi Y, Shizumu M 2002 J. Lightwave Technol. 20 5
Google Scholar
[12] Yamashita T, Yoshida M, Tanaka H 2002 Optical Fiber Communication Conference & Exhibit California, United States, March 17, 2002 pThJ1
[13] Guan B O, Tam H Y, Liu S Y, Wai P K A, Sugimoto N 2003 IEEE Photonics Technol. Lett. 15 11
Google Scholar
[14] Li Q, Fortusini D, Benjamin S D, Qi G, Kelkar P V, da Silva V L 2002 Optical Fiber Communication Conference & Exhibit California, United States, March 17, 2002 pThJ4
[15] Fu Y J, Zheng K, Jian W, Jian S S 2005 Chin. Opt. Lett. 3 4
[16] Paul M C, Harun S W, Huri N A D, Hamzah A, Das S, Pal M, Bhzdra S K, Ahmad H, Yoo S, Kalita M P, Boyland A J, Sahu J K 2010 J. Lightwave Technol. 28 20
Google Scholar
[17] Lou Y, Chen Y, Gu Z M, Qiu Q, He L, Xing Y B, Peng J G, Li H Q, Chu Y B, Dai N L, Li J Y 2021 J. Lightwave Technol. 39 18
Google Scholar
[18] Chen Y, Lou Y, Gu Z M, Qiu Q, He L, Li W Z, Yin X K, Zhao X Y, Liu S K, Peng J G, Li H Q, Xing Y B, Chu Y B, Dai N L, Li J Y 2021 Optics Express. 46 23
Google Scholar
[19] McCumber D E 1964 Phys. Rev. 136 4A
Google Scholar
[20] Brow R K 2000 J. Non-Crystalline Solids 263 1
Google Scholar
期刊类型引用(7)
1. 郑晶晶,黄飞,詹军,童庆武. 关于400 Gbps DWDM技术大规模商用论证. 数字通信世界. 2024(01): 73-75 . 百度学术
2. 马鹏举,马伟鸣,陈英铭,柴文翠. 金尾矿综合回收技术研究进展. 化工矿物与加工. 2024(02): 47-53 . 百度学术
3. 李征,刘新雨,柯熙政. 光放大器原理及其发展. 激光杂志. 2024(05): 1-14 . 百度学术
4. 林漫冰,阮继宇,劳浩贤,钟力,汪松,董新永. 放大自发辐射辅助泵浦的L波段扩展掺铒光纤放大器. 激光与光电子学进展. 2024(13): 228-233 . 百度学术
5. 邹泳芳,董新永,巫智凯,文建湘,王廷云,汪松,王云才,秦玉文. C+L波段全覆盖高增益掺铒光纤放大器. 中国激光. 2024(18): 209-214 . 百度学术
6. 阮继宇,劳浩贤,林漫冰,钟力,汪松,董新永. 高增益二级双程L波段扩展掺铒光纤放大器. 光学学报. 2023(22): 144-149 . 百度学术
7. 武洋,潘蓉,杨鹏,衣永青. 基于气相沉积法的掺铒光纤制备与温度特性. 激光技术. 2023(06): 841-845 . 百度学术
其他类型引用(6)
Catalog
Metrics
- Abstract views: 8140
- PDF Downloads: 234
- Cited By: 13