Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of tidal deformabilities of neutron stars using relativistic mean field theory containing δ mesons

Diao Bin Xu Yan Huang Xiu-Lin Wang Yi-Bo

Citation:

Study of tidal deformabilities of neutron stars using relativistic mean field theory containing δ mesons

Diao Bin, Xu Yan, Huang Xiu-Lin, Wang Yi-Bo
PDF
HTML
Get Citation
  • The research on the macroscopic properties of neutron stars is of great significance in revealing the internal composition and structure of neutron star. In this work, We analyze the influence of δ mesons on the equation of states, the maximum mass, the tidal Love numbers and the tidal deformabilities for the conventional neutron stars and the hyperon stars within the relativistic mean field theory. It is found that the presence of δ mesons can strengthen the tidal deformabilities of the low and medium-mass conventional neutron stars (or hyperon stars). However, the strengthening trends of the tidal deformabilities with δ mesons gradually weaken with the increase of the mass of the conventional neutron stars (or hyperon stars). Especially for massive hyperon stars, the tidal deformabilities of the superstars with δ mesons is weaker than the corresponding values without δ mesons. Moreover, the presence of hyperons can reduce the tidal deformabilities of stars with the same mass. For the stars containing δ mesons, only the tidal deformabilities in the hyperon stars with Λ, Σ and Ξ hyperons can satisfy the constraints of GW170817 and GW190814 events under the parameters selected in the paper. As the data about gravitational waves associated with the neutron stars gradually increase, there will be a possible way of judging the hyperon species in the hyperon stars.
      Corresponding author: Xu Yan, xuy@cho.ac.cn ; Huang Xiu-Lin, huangxl@cho.ac.cn ; Wang Yi-Bo, wangyb@cho.ac.cn
    [1]

    Hewish A, Bell S J, Pilkington J D H, Scott P F, Collins R A 1968 Nature 217 709Google Scholar

    [2]

    Gold T 1968 Nature 218 731Google Scholar

    [3]

    赵诗艺, 刘承志, 黄修林, 王夷博, 许妍 2021 物理学报 70 222601Google Scholar

    Zhao S Y, Liu C Z, Huang X L, Wang Y B, Xu Y 2021 Acta Phys. Sin. 70 222601Google Scholar

    [4]

    詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701Google Scholar

    Zhan Q, Song H F, Tai L T, Wang J T 2015 Acta Phys. Sin. 64 089701Google Scholar

    [5]

    李昂, 胡金牛, 鲍世绍, 申虹, 徐仁新 2019 原子核物理评论 36 1Google Scholar

    Li A, Hu J N, Bao S S, Shen H, Xu R X 2019 Nucl. Phys. Rev. 36 1Google Scholar

    [6]

    来小禹, 徐仁新 2019 物理 48 554Google Scholar

    Lai X Y, Xun R X 2019 Phys. 48 554Google Scholar

    [7]

    龚武坤, 郭文军 2020 物理学报 69 242101Google Scholar

    Gong W K, Guo W J 2020 Acta Phys. Sin. 69 242101Google Scholar

    [8]

    包特木巴根, 杨兴强, 喻孜 2013 物理学报 62 012101Google Scholar

    Bao T M E B G, Yang X Q, Yu Z 2013 Acta Phys. Sin. 62 012101Google Scholar

    [9]

    Pattersons M L, Sulaksono A 2021 Eur. Phys. J. C 81 698Google Scholar

    [10]

    Zhao X F 2015 Phys. Rev. C 92 055802Google Scholar

    [11]

    Rather I A, Usmani, Patra S K 2021 Nucl. Phys. A 1010 122189Google Scholar

    [12]

    Sun B Y, Liu Z W, Xing R Y 2019 AIP. Conf. Proc. 2127 020020Google Scholar

    [13]

    Abbott B P, LIGO Scientific, Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101Google Scholar

    [14]

    Abbott B P, LIGO Scientific, Virgo Collaboration 2018 Phys. Rev. Lett. 121 161101Google Scholar

    [15]

    Abbott R, LIGO Scientific, Virgo Collaboration 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [16]

    Abbott B P, LIGO Scientific, Virgo Collaboration 2020 Astrophys. J. Lett. 892 L3Google Scholar

    [17]

    Abbott R, LIGO Scientific, Virgo Collaboration 2021 Astrophys. J. Lett. 915 L5Google Scholar

    [18]

    Tang S P, Jiang J L, Gao W H, Wei D M 2021 Phys. Rev. D 103 063026Google Scholar

    [19]

    Lim Y, Holt J W 2018 Phys. Rev. Lett. 121 062701Google Scholar

    [20]

    Chatziioannou K, Haster C J Zimmerman A 2018 Phys. Rev. D 97 104036Google Scholar

    [21]

    Han S, Steiner A W 2019 Phys. Rev. D 99 083014Google Scholar

    [22]

    Jin H M, Xia C J, Sun T T, Peng G X 2022 Phys. Lett. B 829 137121Google Scholar

    [23]

    Zhu Z Y, Zhou E P, Li A 2018 Astrophys. J. 862 98Google Scholar

    [24]

    Biswas B, Nandi R Char P, Bose S 2019 Phys. Rev. D 100 044056Google Scholar

    [25]

    Essick R, Landry P, Holz D E 2020 Phys. Rev. D 101 063007Google Scholar

    [26]

    Miao Z Q, Li A, Dai Z G 2022 Mon. Not. R. Astron. Soc. 515 5071Google Scholar

    [27]

    Huang K X, Hu J N, Zhang Y, Shen H 2022 arXiv: 2203. 12357 v1 [nucl-th]

    [28]

    Kubis S, Kutschera M 1997 Phys. Lett. B 399 191Google Scholar

    [29]

    Yu Z, Liu G Z, Zhu M F, Xu Y, Zhao E G 2009 Chin. Phys. Lett. 26 022601Google Scholar

    [30]

    Shao G Y, Liu Y X 2010 Phys. Rev. C 82 055801Google Scholar

    [31]

    Qian Z, Xin R Y, Sun B Y 2018 Sci. Chin. Phys. Mech. Astron. 61 082011Google Scholar

    [32]

    Roca-Maza X, Viñas X, Centelles M, Ring P, Schuck P 2016 Phys. Rev. C 93 069905Google Scholar

    [33]

    Kumar B, Singh S K, Agrawal B K, Patra S K 2017 Nucl. Phys. A 996 197Google Scholar

    [34]

    Bunta J K, Gmuca Š 2003 Phys. Rev. C 68 054318Google Scholar

    [35]

    Xu Y, Liu G Z, Wu Y R, Zhu M F, Wang H Y, Zhao E G 2012 Plasma Sci. Technol. 14 375Google Scholar

    [36]

    Xu Y, Liu G Z, Fan C B, Han X W, Zhu M F Wang H Y, Zhang X J 2013 Chin. Phys. Lett. 20 062101Google Scholar

    [37]

    Liu B, Greco V, Baran V, Colonna M, Di Toro M 2002 Phys. Rev. C 65 045201Google Scholar

    [38]

    Menezes D P, Providência C 2004 Phys. Rev. C 70 058801Google Scholar

    [39]

    Santos A M S, Menezes D P 2004 Phys. Rev. C 69 045803Google Scholar

    [40]

    Avancini S S, Brito L, Menezes D P, Providência C 2004 Phys. Rev. C 70 015203Google Scholar

    [41]

    Menezes D P, Providência C 2003 Phys. Rev. C 68 035804Google Scholar

    [42]

    Boguta J, Bodmer A R 1977 Nucl. Phys. 292 413Google Scholar

    [43]

    Oppenheimer J R, Volkoff G M 1939 Phys. Rev. 55 378Google Scholar

    [44]

    Tolman R C 1939 Phys. Rev. 55 364Google Scholar

    [45]

    Thome K S 1998 Phys. Rev. D 58 124031Google Scholar

    [46]

    Hinderer T 2008 Astrophys. J. 677 1216Google Scholar

    [47]

    Damour T, Nagar A 2009 Phys. Rev. D 80 084035Google Scholar

    [48]

    Hinderer T, Lackey B D, Lang R N, Read J S 2010 Phys. Rev. D 81 123016Google Scholar

    [49]

    Liu B, Guo H, Di Toro M, et al. 2005 Eur. Phys. J. A 25 293Google Scholar

    [50]

    Riley T E, Watts A L, Bogdanov S, et al. 2019 Astrophys. J. Lett. 887 L21Google Scholar

    [51]

    Deller A T, Archibald A M, Brisken W F, et al. 2012 Astrophys. J. Lett. 756 L25Google Scholar

    [52]

    Martinez J G, Stovall K, Freire P C C, et al. 2015 Astrophys. J. 812 143Google Scholar

  • 图 1  6种情况下, 星体物态方程

    Figure 1.  Equation of states for neutron star matter in the six cases.

    图 2  6种情况下, 星体质量-半径关系. 不同颜色条纹区域分别表示PSRs J1903+0327和J0453+1559的质量测量值 $ {1.666}_{-0.01}^{+0.01}{\rm{M}}_{\odot } $$ {1.559}_{-0.004}^{+0.004}{\rm{M}}_{\odot } $[50,51], 橙色误差棒表示PSR J0030+0415的质量和半径测量值范围, 其质量测量值为$ {1.34}_{-0.16}^{+0.15}{\rm{M}}_{\odot } $$ {1.44}_{-0.14}^{+0.15}{\rm{M}}_{\odot } $, 相应半径值为 ${12.71}_{-1.19}^{+1.14}\;\rm{k}\rm{m}$${13.02}_{-1.06}^{+1.24}\;\rm{k}\rm{m}$[52]

    Figure 2.  Mass - radius carves for the six equation of states. The striped areas of different colors stand for the constraints inferred from PSRs J1903+0327 and J0453+1559, and their mass measurement values are $ {1.666}_{-0.01}^{+0.01}{\rm{M}}_{\odot } $ and $ {1.559}_{-0.004}^{+0.004}{\rm{M}}_{\odot } $[50,51], respectively. The orange error bars express the constraints on the mass-radius limits of PSR J0030+0451, and its mass measurement values are $ {1.34}_{-0.16}^{+0.15}{\rm{M}}_{\odot } $ and $ {1.44}_{-0.14}^{+0.15}{\rm{M}}_{\odot } $, the corresponding radius values are ${12.71}_{-1.19}^{+1.14}\;\rm{k}\rm{m}$ and ${13.02}_{-1.06}^{+1.24}\;\rm{k}\rm{m}$, respectively [52]

    图 3  6种情况下, 星体勒夫数-质量关系. 其中不同颜色条纹区域分别表示PSRs J1903+0327和J0435+1559的勒夫数理论值范围, 黑色虚线表示星体质量取 $ 1.4{\rm{M}}_{\odot } $时勒夫数理论值

    Figure 3.  Tidal Love numbers as a function of the masses for the six equation of states. The striped areas of different colors stand for the theoretical values ranges of the tidal Love numbers for PSRs J1903+0327 and J0435+1559, respectively. The vertical dashed line indicates as $M=1.4~{\rm{M}}_{\odot }$.

    图 4  6种情况下, 星体潮汐形变因子-质量关系. 不同颜色条纹区域分别表示PSRs J1903+0327和J0453+1559脉冲星的潮汐形变因子理论值范围, 彩色误差棒分别表示GW170817和GW190814对于星体潮汐形变的约束

    Figure 4.  Tidal deformabilities as a function of the masses for the six equation of states. The different colors striped areas stand for the theoretical values of the tidal deformabilities for PSRs J1903+0327 and J0751+1087, respectively. The color error bar expresses the constraints from GW170817 and GW190814 events for the tidal deformabilities.

    表 1  各参数的取值. 其中, ${f}_{i}={\left( {{g}_{i}}/{{m}_{i}}\right)}^{2}\left({\rm{f}\rm{m}}^{2}\right)$, $ i=\sigma , \omega , \rho \rm{和}\delta $. 介子质量取值如下: ${m}_{\sigma }=550\;\rm{M}\rm{e}\rm{V}$, ${m}_{\omega }=783\;\rm{M}\rm{e}\rm{V}$, ${m}_{\rho }=763\;\rm{M}\rm{e}\rm{V}$${m}_{\delta }=983\;\rm{M}\rm{e}\rm{V}$. 超子耦合常数表示为与核子耦合常数的比值, 即 ${x}_{i}= {{g}_{iH}}/{{g}_{i}}$, $ i=\sigma , \omega , \rho \rm{和}\delta $, 具体取值为 $ {x}_{\omega B}=0.783 $, $ {x}_{\sigma B}={x}_{\delta B}={x}_{\rho B}=0.7 $[49]

    Table 1.  Parameter sets. ${f}_{i}={\left( {{g}_{i}}/{{m}_{i}}\right)}^{2}\left({\rm{f}\rm{m}}^{2}\right)$, $i=\sigma , \omega , \rho \;\rm{a}\rm{n}\rm{d}\;\delta$, we take ${m}_{\sigma }=550\;\rm{M}\rm{e}\rm{V}$, ${m}_{\omega }=783\;\rm{M}\rm{e}\rm{V}$, ${m}_{\rho }=763\;\rm{M}\rm{e}\rm{V}$ and ${m}_{\delta }=983\;\rm{M}\rm{e}\rm{V}$. The ratios of coupling constants between hyperons and nucleons can be expressed ${x}_{i}= {{g}_{iH}}/{{g}_{i}}$, $i=\sigma , \omega , \rho \;\rm{a}\rm{n}\rm{d}\;\delta$. Their values $ {x}_{\omega B} $ and $ {x}_{\sigma B} $, $ {x}_{\delta B} $, $ {x}_{\rho B} $ are 0.783 and 0.7, respectively [49].

    参数$ {f}_{\sigma } $$ {f}_{\omega } $$ {f}_{\rho } $$ {f}_{\delta } $$ {g}_{2}/{\rm{f}\rm{m}}^{-1} $$ {g}_{3} $
    不包含$ \rm{\delta } $介子10.335.420.950.00$ 0.033{g}_{\sigma }^{3} $$ -0.0048{g}_{\sigma }^{4} $
    包含$ \rm{\delta } $介子10.335.423.152.50$ 0.033{g}_{\sigma }^{3} $$ -0.0048{g}_{\sigma }^{4} $
    DownLoad: CSV

    表 2  饱和核物质性质, 饱和密度值以及在饱和密度处对称能、对称斜率和不可压缩系数值[49]

    Table 2.  Properties of nuclear saturation density, namely, the values of the nuclear saturation density $ {\rho }_{0} $, the symmetry energy $ {E}_{\rm{s}\rm{y}\rm{m}} $, the symmetry energy slope L and the incompressibility $ {K}_{\rm{v}} $[49].

    参数$ {\rho }_{0}/{\rm{f}\rm{m}}^{-3} $$ {E}_{\rm{s}\rm{y}\rm{m}}/\rm{M}\rm{e}\rm{V} $$ L/\rm{M}\rm{e}\rm{V} $$ {K}_{\rm{v}}/\rm{M}\rm{e}\rm{V} $
    不包含$ \rm{\delta } $介子0.1631.384240
    包含$ \rm{\delta } $介子0.1631.3103240
    DownLoad: CSV

    表 3  6情况下, 星体最大质量及其对应的半径、勒夫数和潮汐形变因子; 星体最大半径及其对应的质量、勒夫数和潮汐形变因子

    Table 3.  Values of the maximum masses M and the corresponding radii R, the tidal Love numbers $ {k}_{2} $and the tidal deformabilities Λtidal. Values of the maximum radii R and the corresponding masses M, the tidal Love numbers $ {k}_{2} $and the tidal deformabilities Λtidal with the six cases.

    中子星最大质量处中子星最大半径处
    $ M/{\rm{M}}_{\odot } $$ R/\rm{k}\rm{m} $$ {k}_{2} $Λtidal$ M/{\rm{M}}_{\odot } $$ R/\rm{k}\rm{m} $$ {k}_{2} $Λtidal
    1)2.08810.890.02180.99512.9730.1244405
    2)2.11911.310.01981.13813.5700.1052417
    3)1.77610.890.032280.99512.9730.1244405
    4)1.76311.400.031361.13813.5700.1052417
    5)1.70910.710.033310.99512.9370.1244405
    6)1.69110.910.028311.10913.5660.1072791
    DownLoad: CSV

    表 4  6种情况下, $1.4~{\rm{M}}_{\odot }$中子星、PSRs J1903+0327和PSR J0453+1559半径、勒夫数和潮汐形变因子的理论值

    Table 4.  Theoretical values for the radii, the tidal Love numbers and the tidal deformabilities for the $1.4~{\rm{M}}_{\odot }$ neutron star, PSRs J1903+0327 and J0751+1087, respectively.

    R/km$ {K}_{2} $$\varLambda$

    ($ 1.4{\rm{M}}_{\odot } $中子星)
    1)12.800.090545
    2)13.510.085682
    3)12.810.090548
    4)13.510.085682
    5)12.580.084468
    6)13.250.079568
    PSR J1903+0327
    ($ {1.666}_{-0.01}^{+0.01}{\rm{M}}_{\odot } $)
    1)[12.53, 12.56][0.066, 0.067][146, 162]
    2)[13.26, 13.29][0.061, 0.064][180, 205]
    3)[12.28, 12.37][0.060, 0.063][120, 140]
    4)[13.04, 13.13][0.058, 0.061][158, 184]
    5)[11.29, 11.48][0.042, 0.046][055, 070]
    6)[11.49, 11.80][0.034, 0.039][050, 070]
    PSR J0453+1559
    ($ {1.559}_{-0.004}^{+0.004}{\rm{M}}_{\odot } $)
    1)[12.67, 12.68][0.076, 0.077][255, 265]
    2)[13.39, 13.40][0.072, 0.073][313, 329]
    3)[12.63, 12.64][0.075, 0.075][251, 256]
    4)[13.37, 12.38][0.071, 0.073][309, 328]
    5)[12.04, 12.08][0.061, 0.062][159, 169]
    6)[12.61, 12.65][0.055, 0.057][179, 194]
    DownLoad: CSV
  • [1]

    Hewish A, Bell S J, Pilkington J D H, Scott P F, Collins R A 1968 Nature 217 709Google Scholar

    [2]

    Gold T 1968 Nature 218 731Google Scholar

    [3]

    赵诗艺, 刘承志, 黄修林, 王夷博, 许妍 2021 物理学报 70 222601Google Scholar

    Zhao S Y, Liu C Z, Huang X L, Wang Y B, Xu Y 2021 Acta Phys. Sin. 70 222601Google Scholar

    [4]

    詹琼, 宋汉峰, 邰丽婷, 王江涛 2015 物理学报 64 089701Google Scholar

    Zhan Q, Song H F, Tai L T, Wang J T 2015 Acta Phys. Sin. 64 089701Google Scholar

    [5]

    李昂, 胡金牛, 鲍世绍, 申虹, 徐仁新 2019 原子核物理评论 36 1Google Scholar

    Li A, Hu J N, Bao S S, Shen H, Xu R X 2019 Nucl. Phys. Rev. 36 1Google Scholar

    [6]

    来小禹, 徐仁新 2019 物理 48 554Google Scholar

    Lai X Y, Xun R X 2019 Phys. 48 554Google Scholar

    [7]

    龚武坤, 郭文军 2020 物理学报 69 242101Google Scholar

    Gong W K, Guo W J 2020 Acta Phys. Sin. 69 242101Google Scholar

    [8]

    包特木巴根, 杨兴强, 喻孜 2013 物理学报 62 012101Google Scholar

    Bao T M E B G, Yang X Q, Yu Z 2013 Acta Phys. Sin. 62 012101Google Scholar

    [9]

    Pattersons M L, Sulaksono A 2021 Eur. Phys. J. C 81 698Google Scholar

    [10]

    Zhao X F 2015 Phys. Rev. C 92 055802Google Scholar

    [11]

    Rather I A, Usmani, Patra S K 2021 Nucl. Phys. A 1010 122189Google Scholar

    [12]

    Sun B Y, Liu Z W, Xing R Y 2019 AIP. Conf. Proc. 2127 020020Google Scholar

    [13]

    Abbott B P, LIGO Scientific, Virgo Collaboration 2017 Phys. Rev. Lett. 119 161101Google Scholar

    [14]

    Abbott B P, LIGO Scientific, Virgo Collaboration 2018 Phys. Rev. Lett. 121 161101Google Scholar

    [15]

    Abbott R, LIGO Scientific, Virgo Collaboration 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [16]

    Abbott B P, LIGO Scientific, Virgo Collaboration 2020 Astrophys. J. Lett. 892 L3Google Scholar

    [17]

    Abbott R, LIGO Scientific, Virgo Collaboration 2021 Astrophys. J. Lett. 915 L5Google Scholar

    [18]

    Tang S P, Jiang J L, Gao W H, Wei D M 2021 Phys. Rev. D 103 063026Google Scholar

    [19]

    Lim Y, Holt J W 2018 Phys. Rev. Lett. 121 062701Google Scholar

    [20]

    Chatziioannou K, Haster C J Zimmerman A 2018 Phys. Rev. D 97 104036Google Scholar

    [21]

    Han S, Steiner A W 2019 Phys. Rev. D 99 083014Google Scholar

    [22]

    Jin H M, Xia C J, Sun T T, Peng G X 2022 Phys. Lett. B 829 137121Google Scholar

    [23]

    Zhu Z Y, Zhou E P, Li A 2018 Astrophys. J. 862 98Google Scholar

    [24]

    Biswas B, Nandi R Char P, Bose S 2019 Phys. Rev. D 100 044056Google Scholar

    [25]

    Essick R, Landry P, Holz D E 2020 Phys. Rev. D 101 063007Google Scholar

    [26]

    Miao Z Q, Li A, Dai Z G 2022 Mon. Not. R. Astron. Soc. 515 5071Google Scholar

    [27]

    Huang K X, Hu J N, Zhang Y, Shen H 2022 arXiv: 2203. 12357 v1 [nucl-th]

    [28]

    Kubis S, Kutschera M 1997 Phys. Lett. B 399 191Google Scholar

    [29]

    Yu Z, Liu G Z, Zhu M F, Xu Y, Zhao E G 2009 Chin. Phys. Lett. 26 022601Google Scholar

    [30]

    Shao G Y, Liu Y X 2010 Phys. Rev. C 82 055801Google Scholar

    [31]

    Qian Z, Xin R Y, Sun B Y 2018 Sci. Chin. Phys. Mech. Astron. 61 082011Google Scholar

    [32]

    Roca-Maza X, Viñas X, Centelles M, Ring P, Schuck P 2016 Phys. Rev. C 93 069905Google Scholar

    [33]

    Kumar B, Singh S K, Agrawal B K, Patra S K 2017 Nucl. Phys. A 996 197Google Scholar

    [34]

    Bunta J K, Gmuca Š 2003 Phys. Rev. C 68 054318Google Scholar

    [35]

    Xu Y, Liu G Z, Wu Y R, Zhu M F, Wang H Y, Zhao E G 2012 Plasma Sci. Technol. 14 375Google Scholar

    [36]

    Xu Y, Liu G Z, Fan C B, Han X W, Zhu M F Wang H Y, Zhang X J 2013 Chin. Phys. Lett. 20 062101Google Scholar

    [37]

    Liu B, Greco V, Baran V, Colonna M, Di Toro M 2002 Phys. Rev. C 65 045201Google Scholar

    [38]

    Menezes D P, Providência C 2004 Phys. Rev. C 70 058801Google Scholar

    [39]

    Santos A M S, Menezes D P 2004 Phys. Rev. C 69 045803Google Scholar

    [40]

    Avancini S S, Brito L, Menezes D P, Providência C 2004 Phys. Rev. C 70 015203Google Scholar

    [41]

    Menezes D P, Providência C 2003 Phys. Rev. C 68 035804Google Scholar

    [42]

    Boguta J, Bodmer A R 1977 Nucl. Phys. 292 413Google Scholar

    [43]

    Oppenheimer J R, Volkoff G M 1939 Phys. Rev. 55 378Google Scholar

    [44]

    Tolman R C 1939 Phys. Rev. 55 364Google Scholar

    [45]

    Thome K S 1998 Phys. Rev. D 58 124031Google Scholar

    [46]

    Hinderer T 2008 Astrophys. J. 677 1216Google Scholar

    [47]

    Damour T, Nagar A 2009 Phys. Rev. D 80 084035Google Scholar

    [48]

    Hinderer T, Lackey B D, Lang R N, Read J S 2010 Phys. Rev. D 81 123016Google Scholar

    [49]

    Liu B, Guo H, Di Toro M, et al. 2005 Eur. Phys. J. A 25 293Google Scholar

    [50]

    Riley T E, Watts A L, Bogdanov S, et al. 2019 Astrophys. J. Lett. 887 L21Google Scholar

    [51]

    Deller A T, Archibald A M, Brisken W F, et al. 2012 Astrophys. J. Lett. 756 L25Google Scholar

    [52]

    Martinez J G, Stovall K, Freire P C C, et al. 2015 Astrophys. J. 812 143Google Scholar

  • [1] Zhao Shi-Yi, Liu Cheng-Zhi, Huang Xiu-Lin, Wang Yi-Bo, Xu Yan. Effects of strong magnetic field on moment of inertia and surface gravitational redshift in neutron star. Acta Physica Sinica, 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [2] Gong Wu-Kun, Guo Wen-Jun. Hadron-quark deconfinement phase transition in hybrid stars. Acta Physica Sinica, 2020, 69(24): 242101. doi: 10.7498/aps.69.20200925
    [3] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [4] Gao Peng-Lin, Zheng Hao, Sun Guang-Ai. Constraints of neutron star on new interaction ofspin-dependent axial-vector coupling. Acta Physica Sinica, 2019, 68(18): 181102. doi: 10.7498/aps.68.20190477
    [5] Song Dong-Ling, Ming Liang, Shan Hao, Liao Tian-He. Landau-level stability of electrons in superstrong magnetic fields and its influences on electron Fermi energy. Acta Physica Sinica, 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [6] Sun Xu-Dong, Chen Ju-Hua, Wang Yong-Jiu. Magnetic charge constrained the mass-radius ratio of neutron star. Acta Physica Sinica, 2013, 62(16): 160401. doi: 10.7498/aps.62.160401
    [7] Wang Zhao-Jun, Zhu Chun-Hua, Huo Wen-Sheng. Magnetization of degenerate and relativistic electron gas. Acta Physica Sinica, 2012, 61(17): 179701. doi: 10.7498/aps.61.179701
    [8] Zhi Qi-Jun. The study of shape and shape-coexistence of neutron rich nuclei around N=28. Acta Physica Sinica, 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [9] Lv Guo-Liang, Wang Zhao-Jun, Zhang Jun, Zhu Chun-Hua. Critical magnetization of degenerate electronic system in neutron star. Acta Physica Sinica, 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [10] Liu Jing-Jing. Effect of superstrong magnetic field on neutrino energy loss of the nuclide 56Fe, 56Co, 56Ni, 56Mn and 56Cr by electron capture in the crust of neutron stars. Acta Physica Sinica, 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [11] Zhang Jie, Liu Men-Quan, Wei Bing-Tao, Luo Zhi-Quan. The effect of strong magnetic field on proton branch of modified URCA process. Acta Physica Sinica, 2008, 57(9): 5448-5451. doi: 10.7498/aps.57.5448
    [12] DAI ZI-GAO, LU TAN, PENG QIU-HE. PHASE TRANSITION OF NONSTRANGE-STRANGE QUARK MATTER IN THE INTERIOR OF A NEUTRON STAR. Acta Physica Sinica, 1993, 42(8): 1210-1215. doi: 10.7498/aps.42.1210
    [13] WANG QING-DE, LU TAN. DAMPING EFFECTS OF WEAK PROCESSES IN PION CONDENSATE ON NEUTRON STAR VIBRATION. Acta Physica Sinica, 1985, 34(7): 892-900. doi: 10.7498/aps.34.892
    [14] . Acta Physica Sinica, 1964, 20(5): 475-476. doi: 10.7498/aps.20.475
    [15] GUAN HONG. LOW-ENERGY PION-NUCLEON SCATTERING. Acta Physica Sinica, 1964, 20(3): 207-215. doi: 10.7498/aps.20.207
    [16] PENG HONG-AN. LOW ENERGY PION-NUCLEON SCATTERING AND PION-PION INTERACTION. Acta Physica Sinica, 1962, 18(12): 621-628. doi: 10.7498/aps.18.621
    [17] π-介子星裂能谱仪. Acta Physica Sinica, 1961, 17(2): 104-107. doi: 10.7498/aps.17.104
    [18] GUO SHUO-HONG. THE RADIOATIVE DECAY OF π-MESON. Acta Physica Sinica, 1960, 16(5): 299-304. doi: 10.7498/aps.16.299
    [19] CHOU KUAN-CHAO, DAI YUAN-BEN. DISPERSION RELATIONS FOR PION PRODUCTION IN PION-NUCLEON COLLISIONS. Acta Physica Sinica, 1960, 16(5): 252-262. doi: 10.7498/aps.16.252
    [20] STAR-DETECTOR FOR π--MESONS А.Ф.Дунайцев,Ю.Д. Прокошкин. Acta Physica Sinica, 1960, 16(8): 471-478. doi: 10.7498/aps.16.471
Metrics
  • Abstract views:  2457
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2022
  • Accepted Date:  09 September 2022
  • Available Online:  03 November 2022
  • Published Online:  20 January 2023

/

返回文章
返回