搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

庞加莱规范引力对TOV方程的修正

郭征瑞 刘荷蕾 吕国梁 马永革

引用本文:
Citation:

庞加莱规范引力对TOV方程的修正

郭征瑞, 刘荷蕾, 吕国梁, 马永革

The Modification of the TOV Equation in Poincaré* Gauge Gravity

GUO Zhengrui, LIU Helei, LV Guoliang, MA Yongge
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 庞加莱规范引力理论近年来在引力与天体物理领域受到广泛关注和应用。因此,如何从实验观测上区分广义相对论和庞加莱规范引力理论已经成为一个重要的课题。中子星作为引力极强的天体,为检验引力理论提供了理想试验场,目前,庞加莱规范引力理论对中子星性质的研究十分稀少,鉴于庞加莱规范引力理论的重要性,十分有必要在庞加莱规范引力理论的框架下研究中子星的性质,进而考察能否通过对中子星的观测来区分和检验庞加莱规范引力理论和广义相对论。本文在庞加莱规范引力理论框架下,由特定的引力场方程推导出了修改的球对称静态中子星的Tolman-Oppenheimer-Volkoff(TOV)方程,并进一步研究了挠率对静态中子星质量半径关系的影响。分析表明,在一定的条件下,该理论模型中静态中子星的质量半径关系与广义相对论中的结果一致。本文为在庞加莱规范引力框架下进一研究自转中子星的质量半径关系提供了理论基础和参考方法。
    In recent years, Poincaré gauge gravity theory has attracted widespread attention and application in the fields of gravitation and astrophysics. Therefore, how to distinguish between General Relativity and Poincaré Gauge Gravity Theory through experimental observations has become an important subject, The core of Poincaré gauge gravity theory is the introduction of torsion in spacetime. General relativity can be regarded as a special case of Poincaré gauge gravity theory in the absence of torsion. Neutron stars, as celestial bodies with extremely strong gravitational fields, serve as an ideal laboratory for Poincaré gauge gravity theory. At present, research on the properties of neutron stars based on the Poincaré gauge theory of gravitation is very scarce, Given the significance of Poincaré gauge gravity theory, it is essential to investigate the properties of neutron stars within the framework of this theory, and to examine whether observations of neutron stars can be used to distinguish and test Poincaré gauge gravity theory versus general relativity.
    In this paper, we select a specific gravitational field Lagrangian for Poincaré gauge gravity theory to derive the corresponding gravitational field equations. Based on these equations, we further derive the modified Tolman-Oppenheimer-Volkoff (TOV) equation for spherically symmetric static neutron stars. When the spacetime torsion is zero, the modified static neutron star TOV equation reduces precisely to the TOV equation in general relativity.
    We then proceed to investigate the impact of torsion on the mass-radius relation of static neutron stars. Our analysis shows that, in a spherically symmetric spacetime, when the neutron star is static and only the spin tensor of particles is considered(the order of magnitude is 10-34), the mass-radius relation of static neutron stars calculated by this theoretical model is consistent with the results in general relativity. This indicates that, under static conditions, the correction effect of torsion on the mass-radius relation of neutron stars can be neglected.
    This study is limited to static neutron star models under the condition of spherically symmetric spacetime metrics. However, in realistic astrophysical environments, neutron stars possess significant angular momentum. In the final section of this paper, we discuss the effects of neutron star rotation and find that the selected Poincaré gauge gravity model is not suitable for investigating the mass–radius relation of rotating neutron stars. This work provides a theoretical foundation and reference methods for further research on the mass–radius relation of rotating neutron stars within the framework of Poincaré gauge gravity.
  • [1]

    Qin C G, Tan Y J, Lu X Y, Liu T, Yang Y R, Li Q, Shao C G 2025 Phys. Rev. D 111 055008

    [2]

    Qin C G, Liu T, Dai X Y, Guo P B, Huang W, Liu X P, Tan Y J, Shao C G 2025Class. Quantum. Grav. 42135006

    [3]

    Paulo C C, Freire,Wex N 2024Living. Rev. Rel. 27 1

    [4]

    Worden P, Overduin J 2024J. Minkowski. Inst. Mag. 91

    [5]

    Shao L J 2023Lect. Notes. Phys. 1017 385

    [6]

    Paugnat H, Lupsasca A, Vincent F H, Wielgus M 2022 Astron. Astrophys. 668 A11

    [7]

    Leane R K,Tong J 2025J. Instrum. 20 T04001

    [8]

    Leane R K, Tong J 2024 J. Cosmol. Astropart. Phys. 12 031

    [9]

    Kang S, Scopel S, Tomar G,Yoon J H 2019Astropart. Phys. 1091

    [10]

    Das H C, Burgio G F 2025 Univ. 11 159

    [11]

    Yuan W L, Huang C, Zhang C, Zhou E, Xu R X 2025Phys. Rev. D 111063033

    [12]

    Bhattacharjee D, Chattopadhyay P K 2024Eur. Phys. J. C 8477

    [13]

    Romani R W, Kandel D, Filippenko A V, Brink T G,Zheng W K 2022Astrophys. J. Lett. 934L17

    [14]

    Jusufi K, Luciano G G, Sheykhi A, Samart D 2025JHEAp. 47100373

    [15]

    Chatterjee A,Roy R,Dey S,Bandyopadhyay A 2024 Eur. Phys. J. C 84236

    [16]

    Chatterjee A, Gong Y 2025 Ann. Phys. 478170036

    [17]

    Chatterjee A 2024Class. Quantum. Grav. 41095007

    [18]

    Landry A 2025Mathematics. 131003

    [19]

    Koussour M, Altaibayeva A, Bekov S, Holmurodov F, Muminov S, Rayimbaev J 2024Phys.Dark. Univ. 46101664

    [20]

    Koussour M, Altaibayeva A, Bekov S, Donmez O, Muminov S, Rayimbaev,J 2024Phys.Dark.Univ. 46101577

    [21]

    Maurya D C, Myrzalulov R 2024Eur. Phys. J. C84534

    [22]

    Sharif M, Saba S 2019Chin. J. Phys. 58 202

    [23]

    Nashed G G L, Bamba K 2024Phys.Dark Univ. 44 101485

    [24]

    Bubuianu L, Vacaru S I, Veliev E V, Zhamysheva A 2024Eur. Phys. J. C84211

    [25]

    Lin R H, Chen X N, Zhai X H. 2022 Eur. Phys. J. C82308

    [26]

    Mota C E, Pretel J M Z, Flores C O V. 2024 Eur. Phys. J. C84673

    [27]

    Naseer T, Sharif M, Manzoor S, Fatima A 2024 Mod. Phys. Lett. A392450048

    [28]

    Matos I S, Calvão M O, Waga I 2021 Phys. Rev. D103104059

    [29]

    Pauli W 1941 Rev. Mod. Phys. 13203

    [30]

    Yang C N, Mills R L 1954Phys. Rev. 96191

    [31]

    Weinberg S 1972 Phys. Rev. D51412

    [32]

    Utiyama R 1956 Phys. Rev. 1011597

    [33]

    Kibble T W B 1961 J. Math. Phys. 2212

    [34]

    Zhao X, Ma Y G 2024 Commun. Theor. Phys. 76065403

    [35]

    Zhang H C, Xu L X 2019J. Cosmol. Astropart.Phys. 9050

    [36]

    Zhang H C, Xu L X 2020J.Cosmol. Astropart. Phys. 10003

    [37]

    Cembranos J A R, Valcárcel J G 2017 J. Cosmol. Astropart. Phys. 1 14

    [38]

    Giacconi R, Gursky H, Paolini F R, Rossi B B 1962Phys. Rev. Lett. 9439

    [39]

    Baade W, Zwicky F 1934Phys. Rev. 4676

    [40]

    Oppenheimer J R, Volkoff G M 1939Phys. Rev. 55 374

    [41]

    Schmidt M 1963Nature197 1040

    [42]

    Shklovsky I 1967 Astrophys. J. 148 L1

    [43]

    Lundmark K 1921Publ. Astron. Soc. Pac. 33225

    [44]

    Kardashev N 1964 Astron. Zh. 41 807

    [45]

    Pacini F 1967Nature216 567

    [46]

    Hewish A, Bell S J, Pilkington J D H, Scott P F, Collins R A 1968Nature217709

    [47]

    Gold T 1968 Nature218 731

    [48]

    Obukhov Y N 2006Int. J. Geom. Meth. Mod. Phys. 3 95

    [49]

    Weyssenhoff J, Raabe A 1946Nature157 766

    [50]

    Obukhov Y N, Korotky V A 1987 Class. Quantum. Grav. 41633

  • [1] 刁彬, 许妍, 黄修林, 王夷博. 利用含δ介子的相对论平均场理论研究中子星潮汐形变性质. 物理学报, doi: 10.7498/aps.72.20221599
    [2] 郭家明, 薛迅. 克尔度规引力场对费米子的量子散射. 物理学报, doi: 10.7498/aps.71.20220876
    [3] 赵诗艺, 刘承志, 黄修林, 王夷博, 许妍. 强磁场对中子星转动惯量与表面引力红移的影响. 物理学报, doi: 10.7498/aps.70.20211051
    [4] 龚武坤, 郭文军. 混合中子星内强子-夸克退禁闭相变. 物理学报, doi: 10.7498/aps.69.20200925
    [5] 张识, 王攀, 张瑞浩, 陈红. 选取任意庞加莱截面的新方法. 物理学报, doi: 10.7498/aps.69.20191585
    [6] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, doi: 10.7498/aps.68.20190760
    [7] 高朋林, 郑皓, 孙光爱. 中子星对自旋相关轴矢量新相互作用的约束. 物理学报, doi: 10.7498/aps.68.20190477
    [8] 宋冬灵, 明亮, 单昊, 廖天河. 超强磁场下电子朗道能级稳定性及对电子费米能的影响. 物理学报, doi: 10.7498/aps.65.027102
    [9] 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程. 物理学报, doi: 10.7498/aps.62.139701
    [10] 陈红, 吴玲. 设计和实现三维空间任意庞加莱截平面电路. 物理学报, doi: 10.7498/aps.62.020507
    [11] 孙旭东, 陈菊华, 王永久. 磁荷对中子星质量半径比的约束. 物理学报, doi: 10.7498/aps.62.160401
    [12] 王兆军, 吕国梁, 朱春花, 霍文生. 相对论简并电子气体的磁化. 物理学报, doi: 10.7498/aps.61.179701
    [13] 王兆军, 吕国梁, 朱春花, 张军. 中子星中简并电子气体的临界磁化. 物理学报, doi: 10.7498/aps.60.049702
    [14] 刘晶晶. 超强磁场对中子星外壳层核素56Fe,56Co,56Ni,56Mn和56Cr电子俘获过程中微子能量损失的影响. 物理学报, doi: 10.7498/aps.59.5169
    [15] 张 洁, 刘门全, 魏丙涛, 罗志全. 强磁场中修正URCA过程的中微子产能率. 物理学报, doi: 10.7498/aps.57.5448
    [16] 王 勇, 郭永新. Riemann-Cartan空间中的d'Alembert-Lagrange原理. 物理学报, doi: 10.7498/aps.54.5517
    [17] 戴子高, 陆埮, 彭秋和. 中子星内部非奇异-奇异夸克物质的相变. 物理学报, doi: 10.7498/aps.42.1210
    [18] 王青德, 陆埮. π凝聚态中的弱过程对中子星振动的阻尼效应. 物理学报, doi: 10.7498/aps.34.892
    [19] 阎沐霖, 郭汉英. 有挠量子引力和无鬼de Sitter引力(Ⅱ)——SO(3,2)de Sitter引力的无鬼性. 物理学报, doi: 10.7498/aps.33.1386
    [20] 阎沐霖, 郭汉英. 有挠量子引力和无鬼de Sitter引力(Ⅰ)——线性协变规范下的有挠引力. 物理学报, doi: 10.7498/aps.33.1377
计量
  • 文章访问数:  33
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回