-
庞加莱规范引力理论近年来在引力与天体物理领域受到广泛关注和应用。因此,如何从实验观测上区分广义相对论和庞加莱规范引力理论已经成为一个重要的课题。中子星作为引力极强的天体,为检验引力理论提供了理想试验场,目前,庞加莱规范引力理论对中子星性质的研究十分稀少,鉴于庞加莱规范引力理论的重要性,十分有必要在庞加莱规范引力理论的框架下研究中子星的性质,进而考察能否通过对中子星的观测来区分和检验庞加莱规范引力理论和广义相对论。本文在庞加莱规范引力理论框架下,由特定的引力场方程推导出了修改的球对称静态中子星的Tolman-Oppenheimer-Volkoff(TOV)方程,并进一步研究了挠率对静态中子星质量半径关系的影响。分析表明,在一定的条件下,该理论模型中静态中子星的质量半径关系与广义相对论中的结果一致。本文为在庞加莱规范引力框架下进一研究自转中子星的质量半径关系提供了理论基础和参考方法。In recent years, Poincaré gauge gravity theory has attracted widespread attention and application in the fields of gravitation and astrophysics. Therefore, how to distinguish between General Relativity and Poincaré Gauge Gravity Theory through experimental observations has become an important subject, The core of Poincaré gauge gravity theory is the introduction of torsion in spacetime. General relativity can be regarded as a special case of Poincaré gauge gravity theory in the absence of torsion. Neutron stars, as celestial bodies with extremely strong gravitational fields, serve as an ideal laboratory for Poincaré gauge gravity theory. At present, research on the properties of neutron stars based on the Poincaré gauge theory of gravitation is very scarce, Given the significance of Poincaré gauge gravity theory, it is essential to investigate the properties of neutron stars within the framework of this theory, and to examine whether observations of neutron stars can be used to distinguish and test Poincaré gauge gravity theory versus general relativity.
In this paper, we select a specific gravitational field Lagrangian for Poincaré gauge gravity theory to derive the corresponding gravitational field equations. Based on these equations, we further derive the modified Tolman-Oppenheimer-Volkoff (TOV) equation for spherically symmetric static neutron stars. When the spacetime torsion is zero, the modified static neutron star TOV equation reduces precisely to the TOV equation in general relativity.
We then proceed to investigate the impact of torsion on the mass-radius relation of static neutron stars. Our analysis shows that, in a spherically symmetric spacetime, when the neutron star is static and only the spin tensor of particles is considered(the order of magnitude is 10-34), the mass-radius relation of static neutron stars calculated by this theoretical model is consistent with the results in general relativity. This indicates that, under static conditions, the correction effect of torsion on the mass-radius relation of neutron stars can be neglected.
This study is limited to static neutron star models under the condition of spherically symmetric spacetime metrics. However, in realistic astrophysical environments, neutron stars possess significant angular momentum. In the final section of this paper, we discuss the effects of neutron star rotation and find that the selected Poincaré gauge gravity model is not suitable for investigating the mass–radius relation of rotating neutron stars. This work provides a theoretical foundation and reference methods for further research on the mass–radius relation of rotating neutron stars within the framework of Poincaré gauge gravity.-
Keywords:
- Poincaré /
- gauge gravity /
- torsion /
- neutron star
-
[1] Qin C G, Tan Y J, Lu X Y, Liu T, Yang Y R, Li Q, Shao C G 2025 Phys. Rev. D 111 055008
[2] Qin C G, Liu T, Dai X Y, Guo P B, Huang W, Liu X P, Tan Y J, Shao C G 2025Class. Quantum. Grav. 42135006
[3] Paulo C C, Freire,Wex N 2024Living. Rev. Rel. 27 1
[4] Worden P, Overduin J 2024J. Minkowski. Inst. Mag. 91
[5] Shao L J 2023Lect. Notes. Phys. 1017 385
[6] Paugnat H, Lupsasca A, Vincent F H, Wielgus M 2022 Astron. Astrophys. 668 A11
[7] Leane R K,Tong J 2025J. Instrum. 20 T04001
[8] Leane R K, Tong J 2024 J. Cosmol. Astropart. Phys. 12 031
[9] Kang S, Scopel S, Tomar G,Yoon J H 2019Astropart. Phys. 1091
[10] Das H C, Burgio G F 2025 Univ. 11 159
[11] Yuan W L, Huang C, Zhang C, Zhou E, Xu R X 2025Phys. Rev. D 111063033
[12] Bhattacharjee D, Chattopadhyay P K 2024Eur. Phys. J. C 8477
[13] Romani R W, Kandel D, Filippenko A V, Brink T G,Zheng W K 2022Astrophys. J. Lett. 934L17
[14] Jusufi K, Luciano G G, Sheykhi A, Samart D 2025JHEAp. 47100373
[15] Chatterjee A,Roy R,Dey S,Bandyopadhyay A 2024 Eur. Phys. J. C 84236
[16] Chatterjee A, Gong Y 2025 Ann. Phys. 478170036
[17] Chatterjee A 2024Class. Quantum. Grav. 41095007
[18] Landry A 2025Mathematics. 131003
[19] Koussour M, Altaibayeva A, Bekov S, Holmurodov F, Muminov S, Rayimbaev J 2024Phys.Dark. Univ. 46101664
[20] Koussour M, Altaibayeva A, Bekov S, Donmez O, Muminov S, Rayimbaev,J 2024Phys.Dark.Univ. 46101577
[21] Maurya D C, Myrzalulov R 2024Eur. Phys. J. C84534
[22] Sharif M, Saba S 2019Chin. J. Phys. 58 202
[23] Nashed G G L, Bamba K 2024Phys.Dark Univ. 44 101485
[24] Bubuianu L, Vacaru S I, Veliev E V, Zhamysheva A 2024Eur. Phys. J. C84211
[25] Lin R H, Chen X N, Zhai X H. 2022 Eur. Phys. J. C82308
[26] Mota C E, Pretel J M Z, Flores C O V. 2024 Eur. Phys. J. C84673
[27] Naseer T, Sharif M, Manzoor S, Fatima A 2024 Mod. Phys. Lett. A392450048
[28] Matos I S, Calvão M O, Waga I 2021 Phys. Rev. D103104059
[29] Pauli W 1941 Rev. Mod. Phys. 13203
[30] Yang C N, Mills R L 1954Phys. Rev. 96191
[31] Weinberg S 1972 Phys. Rev. D51412
[32] Utiyama R 1956 Phys. Rev. 1011597
[33] Kibble T W B 1961 J. Math. Phys. 2212
[34] Zhao X, Ma Y G 2024 Commun. Theor. Phys. 76065403
[35] Zhang H C, Xu L X 2019J. Cosmol. Astropart.Phys. 9050
[36] Zhang H C, Xu L X 2020J.Cosmol. Astropart. Phys. 10003
[37] Cembranos J A R, Valcárcel J G 2017 J. Cosmol. Astropart. Phys. 1 14
[38] Giacconi R, Gursky H, Paolini F R, Rossi B B 1962Phys. Rev. Lett. 9439
[39] Baade W, Zwicky F 1934Phys. Rev. 4676
[40] Oppenheimer J R, Volkoff G M 1939Phys. Rev. 55 374
[41] Schmidt M 1963Nature197 1040
[42] Shklovsky I 1967 Astrophys. J. 148 L1
[43] Lundmark K 1921Publ. Astron. Soc. Pac. 33225
[44] Kardashev N 1964 Astron. Zh. 41 807
[45] Pacini F 1967Nature216 567
[46] Hewish A, Bell S J, Pilkington J D H, Scott P F, Collins R A 1968Nature217709
[47] Gold T 1968 Nature218 731
[48] Obukhov Y N 2006Int. J. Geom. Meth. Mod. Phys. 3 95
[49] Weyssenhoff J, Raabe A 1946Nature157 766
[50] Obukhov Y N, Korotky V A 1987 Class. Quantum. Grav. 41633
计量
- 文章访问数: 33
- PDF下载量: 1
- 被引次数: 0