Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bilayer network spreading dynamics driven by community structure and activity

Shen Li-Feng Wang Jian-Bo Du Zhan-Wei Xu Xiao-Ke

Citation:

Bilayer network spreading dynamics driven by community structure and activity

Shen Li-Feng, Wang Jian-Bo, Du Zhan-Wei, Xu Xiao-Ke
PDF
HTML
Get Citation
  • Epidemic outbreaks in the real world are often accompanied by rapid information diffusion, which will change individual behavior patterns and affect the spread of epidemics. The community phenomenon in human society will also have an important influence on the spread of epidemics. The above factors to construct a new bilayer network are considered in this work. The activity-driven model is used to generate time-varying online information contact layer network and offline physical contact layer network. The information diffusion of individual online contact layer is used to affect the epidemic spreading dynamics of offline physical contact layer, and the individual mobility factor is used to control the community structure characteristics. In order to obtain the spreading dynamic equation of the whole network and analyze the spreading threshold of the network effectively, the microscopic Markov chain (MMC) approach is improved and extended to time-varying networks. Experimental verification of Monte Carlo simulations shows that the proposed method is highly accurate in predicting epidemic outbreak thresholds. The results show that individual mobility has no effect on the epidemic outbreak threshold, but it will affect the final number of infections in each community. The greater the individual contact capability of the online contact layer, the smaller the individual contact capability of the offline contact layer that can effectively suppress the epidemic spread. The above findings can present an important reference for effectively preventing and controlling the epidemic transmission in the real world.
      Corresponding author: Wang Jian-Bo, phyjbw@gmail.com ; Xu Xiao-Ke, xuxiaoke@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62173065).
    [1]

    李翔, 李聪, 王建波 2020 复杂网络传播理论-流行的隐秩序(上卷) (北京: 高等教育出版社) 第10页

    Li X, Li C, Wang J B 2020 Theory of Spreading on Complex Networks: Hidden Rules of Epidemics (Vol. 1) (Beijing: Higher Education Press) p10 (in Chinese)

    [2]

    Garten R J, Davis C T, Russell C A, et al. 2009 Science 325 197Google Scholar

    [3]

    Machens A, Gesualdo F, Rizzo C, Tozzi A E, Barrat A, Cattuto C 2013 BMC Infect. Dis. 13 185Google Scholar

    [4]

    Park B J, Wannemuehler K A, Marston B J, Govender N, Pappas P G, Chiller T M 2009 AIDS 23 525Google Scholar

    [5]

    Schwarzkopf Y, Rákos A, Mukamel D 2010 Phys. Rev. E 82 036112Google Scholar

    [6]

    Anderson R M, Anderson B, May R M 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford: Oxford University Press) p127

    [7]

    Hethcote H W 2000 SIAM Rev. 42 599Google Scholar

    [8]

    Grabowski A, Kosiński R A 2004 Phys. Rev. E 70 031908Google Scholar

    [9]

    Yang H, Gu C G, Tang M, Cai S M, Lai Y C 2019 Appl. Math. Model. 75 806Google Scholar

    [10]

    Granell C, Gómez S, Arenas A 2013 Phys. Rev. Lett. 111 128701Google Scholar

    [11]

    Davis J T, Perra N, Zhang Q, Moreno Y, Vespignani A 2020 Nat. Phys. 16 590Google Scholar

    [12]

    Wang B, Gou M, Han Y 2021 Nonlinear Dyn. 105 3835Google Scholar

    [13]

    Zhang Q P, Zhong L, Gao S Y, Li X M 2018 IEEE Trans. Cybern. 48 3411Google Scholar

    [14]

    Salehi M, Sharma R, Marzolla M, Magnani M, Siyari P, Montesi D 2015 IEEE Trans. Netw. Sci. Eng. 2 65Google Scholar

    [15]

    Wang B H, Chen W S, Wang J C, Zhang B, Zhang Z Q, Qiu X G 2019 IEEE Trans. Cybern. 49 4308Google Scholar

    [16]

    孙皓宸, 刘肖凡, 许小可, 吴晔 2020 物理学报 69 240201Google Scholar

    Sun H C, Liu X F, Xu X K, Wu Y 2020 Acta Phys. Sin. 69 240201Google Scholar

    [17]

    Wang H, Zhang H F, Zhu P C, Ma C 2022 Chaos 32 083110Google Scholar

    [18]

    Wang W, Liu Q H, Cai S M, Tang M, Braunstein L A, Stanley H E 2016 Sci. Rep. 6 29259Google Scholar

    [19]

    Pan Y H, Yan Z J 2018 Physica A 491 45Google Scholar

    [20]

    Funk S, Gilad E, Watkins C, Jansen V A 2009 Proc. Natl. Acad. Sci. USA 106 6872Google Scholar

    [21]

    Guo Q T, Lei Y J, Jiang X, Ma Y F, Huo G Y, Zheng Z M 2016 Chaos 26 043110

    [22]

    Yang B, Shang K K, Small M, Chao N P 2022 National Science Open 62 254491591Google Scholar

    [23]

    Fortunato S 2010 Phys. Rep. 486 75Google Scholar

    [24]

    常振超, 陈鸿昶, 刘阳, 于洪涛, 黄瑞阳 2015 物理学报 64 218901Google Scholar

    Chang Z C, Chen H C, Liu Y, Yu H T, Huang R Y 2015 Acta Phys. Sin. 64 218901Google Scholar

    [25]

    Huang H, Chen Y, Ma Y 2021 Appl. Math. Comput. 388 125536

    [26]

    Digital 2022: Another Year of Bumper Growth < a href="https://wearesocial.com/cn/blog/2022/01/digital-2022-another-year-of-bumper-growth/">https://wearesocial.com/cn/blog/2022/01/digital-2022-another-year-of-bumper-growth/ [2022-11-17]

    [27]

    Aleta A, Martín-Corral D, Pastore Y Piontti A, et al. 2020 Nat. Hum. Behav. 4 964Google Scholar

    [28]

    Metcalf C J E, Morris D H, Park S W 2020 Science 369 368Google Scholar

    [29]

    Perra N, Gonçalves B 2012 Sci. Rep. 2 469Google Scholar

    [30]

    Mossong J, Hens N, Jit M, et al. 2008 PLOS Med. 5 e74Google Scholar

  • 图 1  具有社团结构的信息-流行病共演化模型

    Figure 1.  Information-epidemic co-evolutionary model with community structure.

    图 2  状态为US, AI和AS的概率转移树

    Figure 2.  Transition probability trees for the states US, AI, and AS, respectively.

    图 3  不同的信息扩散率下MC模拟和理论阈值的对比

    Figure 3.  Comparison of Monte Carlo simulation and theoretical thresholds for different information diffusion rates.

    图 4  最终感染规模热力图 (a) MC模拟结果; (b) MMC方法结果

    Figure 4.  Final infection scale heat map: (a) MC simulation results; (b) MMC approach results.

    图 5  (a)—(c) 个体接触能力在不同的$\lambda $下对流行病爆发阈值的影响; (d)—(f)线上信息接触层接触能力在不同的$\lambda $下对流行病爆发阈值影响的波动率; (g)—(i)线下物理接触层接触能力在不同的$\lambda $下对流行病爆发阈值影响的波动率

    Figure 5.  (a)–(c) Influence of individual contact ability on epidemic outbreak threshold under different conditions; (d)–(f) volatility of the impact on epidemic outbreak thresholds under different virtual network layer contact capabilities; (g)–(i) volatility of impact on epidemic outbreak thresholds for different physical contact layer contact capacities.

    图 6  (a)自我保护率对流行病爆发阈值的影响; (b)自我保护率对稳态感染个体比例的影响

    Figure 6.  (a) Impact of self-protection rate on epidemic outbreak threshold; (b) effect of self-protection rate on the proportion of individuals with stable infection.

    图 7  稳态感染个体比例${\rho ^{\text{I}}}$作为流行病传染率$\beta $和参数h的函数 (a)社团1的MC结果; (b)社团2的MC结果

    Figure 7.  Steady-state proportion of infected individuals as a function of the epidemic transmission rate and the parameter h: (a) Monte Carlo results for community 1; (b) Monte Carlo results for community 2.

    表 1  符号的含义

    Table 1.  Description of all symbols

    符号描述
    $N$网络中的个体数
    $t$时间步
    ${k_{\text{v}}}$线上信息接触层中的活跃个体在单位时间步长中产生的连边数
    ${k_{\text{p}}}$线下物理接触层中的活跃个体在单位时间步长中产生的连边数
    $a_{l, i}^{\text{V}}$线上信息接触层中个体i 在$l$社团的活跃性类别
    $a_{l, i}^{\text{P}}$线下物理接触层中个体i 在$l$社团的活跃性类别
    $ \left\langle {{k_{\text{v}}}} \right\rangle $线上信息接触层的平均度
    $\left\langle {{k_{\text{p}}}} \right\rangle $线下物理接触层的平均度
    $\lambda $信息扩散率
    $\delta $信息遗忘率
    $\beta $流行病传染率
    $\mu $流行病恢复率
    ${\beta ^{\text{U}}}$状态为U的个体的流行病传染率
    ${\beta ^{\text{A}}}$状态为A的个体的流行病传染率
    $\sigma $捕捉${\beta ^{\text{U}}}$和${\beta ^{\text{A}}}$之间差异的参数, 又称为自我保护率: ${\beta ^{\text{A}}} = \sigma {\beta ^{\text{U}}}$
    $h$个体流动率
    $P_{l, i}^X$个体i 在$l$社团处于状态X的概率
    ${r_{l, i}}\left( t \right)$处于$l$社团的个体i 在时间$t$内没有被任何邻居告知的概率
    $q_{l, i}^{\text{A}}\left( t \right)$处于$l$社团且状态为A的个体i 在时间$t$内没有被任何邻居感染的概率
    $q_{l, i}^{\text{U}}\left( t \right)$处于$l$社团且状态为U的个体i在时间$t$内没有被任何邻居感染的概率
    DownLoad: CSV
  • [1]

    李翔, 李聪, 王建波 2020 复杂网络传播理论-流行的隐秩序(上卷) (北京: 高等教育出版社) 第10页

    Li X, Li C, Wang J B 2020 Theory of Spreading on Complex Networks: Hidden Rules of Epidemics (Vol. 1) (Beijing: Higher Education Press) p10 (in Chinese)

    [2]

    Garten R J, Davis C T, Russell C A, et al. 2009 Science 325 197Google Scholar

    [3]

    Machens A, Gesualdo F, Rizzo C, Tozzi A E, Barrat A, Cattuto C 2013 BMC Infect. Dis. 13 185Google Scholar

    [4]

    Park B J, Wannemuehler K A, Marston B J, Govender N, Pappas P G, Chiller T M 2009 AIDS 23 525Google Scholar

    [5]

    Schwarzkopf Y, Rákos A, Mukamel D 2010 Phys. Rev. E 82 036112Google Scholar

    [6]

    Anderson R M, Anderson B, May R M 1992 Infectious Diseases of Humans: Dynamics and Control (Oxford: Oxford University Press) p127

    [7]

    Hethcote H W 2000 SIAM Rev. 42 599Google Scholar

    [8]

    Grabowski A, Kosiński R A 2004 Phys. Rev. E 70 031908Google Scholar

    [9]

    Yang H, Gu C G, Tang M, Cai S M, Lai Y C 2019 Appl. Math. Model. 75 806Google Scholar

    [10]

    Granell C, Gómez S, Arenas A 2013 Phys. Rev. Lett. 111 128701Google Scholar

    [11]

    Davis J T, Perra N, Zhang Q, Moreno Y, Vespignani A 2020 Nat. Phys. 16 590Google Scholar

    [12]

    Wang B, Gou M, Han Y 2021 Nonlinear Dyn. 105 3835Google Scholar

    [13]

    Zhang Q P, Zhong L, Gao S Y, Li X M 2018 IEEE Trans. Cybern. 48 3411Google Scholar

    [14]

    Salehi M, Sharma R, Marzolla M, Magnani M, Siyari P, Montesi D 2015 IEEE Trans. Netw. Sci. Eng. 2 65Google Scholar

    [15]

    Wang B H, Chen W S, Wang J C, Zhang B, Zhang Z Q, Qiu X G 2019 IEEE Trans. Cybern. 49 4308Google Scholar

    [16]

    孙皓宸, 刘肖凡, 许小可, 吴晔 2020 物理学报 69 240201Google Scholar

    Sun H C, Liu X F, Xu X K, Wu Y 2020 Acta Phys. Sin. 69 240201Google Scholar

    [17]

    Wang H, Zhang H F, Zhu P C, Ma C 2022 Chaos 32 083110Google Scholar

    [18]

    Wang W, Liu Q H, Cai S M, Tang M, Braunstein L A, Stanley H E 2016 Sci. Rep. 6 29259Google Scholar

    [19]

    Pan Y H, Yan Z J 2018 Physica A 491 45Google Scholar

    [20]

    Funk S, Gilad E, Watkins C, Jansen V A 2009 Proc. Natl. Acad. Sci. USA 106 6872Google Scholar

    [21]

    Guo Q T, Lei Y J, Jiang X, Ma Y F, Huo G Y, Zheng Z M 2016 Chaos 26 043110

    [22]

    Yang B, Shang K K, Small M, Chao N P 2022 National Science Open 62 254491591Google Scholar

    [23]

    Fortunato S 2010 Phys. Rep. 486 75Google Scholar

    [24]

    常振超, 陈鸿昶, 刘阳, 于洪涛, 黄瑞阳 2015 物理学报 64 218901Google Scholar

    Chang Z C, Chen H C, Liu Y, Yu H T, Huang R Y 2015 Acta Phys. Sin. 64 218901Google Scholar

    [25]

    Huang H, Chen Y, Ma Y 2021 Appl. Math. Comput. 388 125536

    [26]

    Digital 2022: Another Year of Bumper Growth < a href="https://wearesocial.com/cn/blog/2022/01/digital-2022-another-year-of-bumper-growth/">https://wearesocial.com/cn/blog/2022/01/digital-2022-another-year-of-bumper-growth/ [2022-11-17]

    [27]

    Aleta A, Martín-Corral D, Pastore Y Piontti A, et al. 2020 Nat. Hum. Behav. 4 964Google Scholar

    [28]

    Metcalf C J E, Morris D H, Park S W 2020 Science 369 368Google Scholar

    [29]

    Perra N, Gonçalves B 2012 Sci. Rep. 2 469Google Scholar

    [30]

    Mossong J, Hens N, Jit M, et al. 2008 PLOS Med. 5 e74Google Scholar

  • [1] Gao Yan-Li, Xu Wei-Nan, Zhou Jie, Chen Shi-Ming. Analysis of seepage behaviour in binary two-layer coupled networks. Acta Physica Sinica, 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] Li Ying-Ke, Zhao Shi, Lou Yi-Jun, Gao Dao-Zhou, Yang Lin, He Dai-Hai. Epidemiological parameters and models of coronavirus disease 2019. Acta Physica Sinica, 2020, 69(9): 090202. doi: 10.7498/aps.69.20200389
    [3] Liang Xiao, Qian Zhi-Hong, Tian Hong-Liang, Wang Xue. Markov decision model based handoff selection algorithm for heterogeneous wireless networks. Acta Physica Sinica, 2016, 65(23): 236402. doi: 10.7498/aps.65.236402
    [4] Su Xiao-Ping, Song Yu-Rong. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks. Acta Physica Sinica, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [5] Yin Wen-Ye, He Wei-Ji, Gu Guo-Hua, Chen Qian. A new full waveform analysis approach using simulated tempering Markov chain Monte Carlo method. Acta Physica Sinica, 2014, 63(16): 164205. doi: 10.7498/aps.63.164205
    [6] Wang Xing-Yuan, Zhao Zhong-Xiang. Partitioning community structure in complex networks based on node dependent degree. Acta Physica Sinica, 2014, 63(17): 178901. doi: 10.7498/aps.63.178901
    [7] Ding Yi-Min, Ding Zhuo, Yang Chang-Ping. The network model of urban subway networks with community structure. Acta Physica Sinica, 2013, 62(9): 098901. doi: 10.7498/aps.62.098901
    [8] Li Rui-Qi, Tang Ming, Hui Pak-Ming. Epidemic spreading on multi-relational networks. Acta Physica Sinica, 2013, 62(16): 168903. doi: 10.7498/aps.62.168903
    [9] Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [10] Yuan Chao, Chai Yi. Group similarity based algorithm for network community structure detection. Acta Physica Sinica, 2012, 61(21): 218901. doi: 10.7498/aps.61.218901
    [11] Zhang Cong, Shen Hui-Zhang, Li Feng, Yang He-Qun. Multi-resolution density modularity for finding community structure in complex networks. Acta Physica Sinica, 2012, 61(14): 148902. doi: 10.7498/aps.61.148902
    [12] Di Gen-Hu, Xu Yong, Xu Wei, Gu Ren-Cai. Chaos for a class of complex epidemiological models. Acta Physica Sinica, 2011, 60(2): 020504. doi: 10.7498/aps.60.020504
    [13] Shao Fei, Jiang Guo-Ping. Optimal traffic routing strategy based on community structure. Acta Physica Sinica, 2011, 60(7): 078902. doi: 10.7498/aps.60.078902
    [14] Lü Ling, Zou Jia-Rui, Yang Ming, Meng Le, Guo Li, Chai Yuan. Synchronization of spatiotemporal chaos in large scale rich-club network. Acta Physica Sinica, 2010, 59(10): 6864-6870. doi: 10.7498/aps.59.6864
    [15] Shen Yi, Xu Huan-Liang. The evaluation function of weight similarity and its application in community detection in weighted networks. Acta Physica Sinica, 2010, 59(9): 6022-6028. doi: 10.7498/aps.59.6022
    [16] Wang Gao-Xia, Shen Yi. Modularity matrix of networks and the measure of community structure. Acta Physica Sinica, 2010, 59(2): 842-850. doi: 10.7498/aps.59.842
    [17] Zheng Li-Ming, Liu Song-Hao, Wang Fa-Qiang. Geometric phase evolution of atom under non-Markovian environment. Acta Physica Sinica, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [18] Gao Zhong-Ke, Jin Ning-De. Complex network community structure of two-phase flow pattern and its statistical characteristics. Acta Physica Sinica, 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [19] Chen Bo, Xia Qing-Zhong, Lebedev V. T.. Experimental study of fullerene-PVP polymers by small-angle neutron scattering. Acta Physica Sinica, 2005, 54(6): 2821-2825. doi: 10.7498/aps.54.2821
    [20] Zhong Ling, Weng Jia-Qiang. . Acta Physica Sinica, 2000, 49(4): 626-630. doi: 10.7498/aps.49.626
Metrics
  • Abstract views:  5892
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2022
  • Accepted Date:  04 January 2023
  • Available Online:  07 January 2023
  • Published Online:  20 March 2023

/

返回文章
返回