Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LCP /TLC based composite multi-dimensional polarization-dependent anti-counterfeiting device

Zhu Yu-Wen Yuan Cong-Long Liu Bing-Hui Wang Xiao-Qian Zheng Zhi-Gang

Citation:

LCP /TLC based composite multi-dimensional polarization-dependent anti-counterfeiting device

Zhu Yu-Wen, Yuan Cong-Long, Liu Bing-Hui, Wang Xiao-Qian, Zheng Zhi-Gang
PDF
HTML
Get Citation
  • Modern anti-counterfeiting technology can effectively suppress and combat forgery and counterfeiting behaviors, which is of great significance in information security, national defense and economy. However, the realization of multi-dimensional, integrated, difficult-to-copy and easy-to-detect optical anti-counterfeiting devices is still a challenge. In this paper, a multi-dimensional and polarization-dependent anti-counterfeiting device with structure color is designed, which is composed of patterned liquid crystal polymer (LCP) nematic layer and thermotropic cholesteric liquid crystal (TLC) layer. It has the advantages of displaying and hiding polarization states, wide color tuning range, convenient operation, high integration and security. For incident light with a specific polarization state, the patterned nematic phase LCP layer can carry out regionalized phase editing and polarization state modulation, while the TLC layer can selectively reflect the incident light. Therefore, a patterned structural color security label is subtly realized. The anti-counterfeiting device can realize the display, hiding, color adjustment and image/background conversion of patterns by adjusting the polarization direction of incident light. In addition, the TLC layer in the device can meet the application requirements of the anti-counterfeit device at different environmental temperatures through the flexible design of the system weight ratio. Furthermore, the device can be easily heated by body temperature, realize dynamic real-time wide-spectrum color modulation and reversible pattern erasure, and further enhance its security dimension and security. The multi-polarization-type anti-counterfeiting device has three-dimensional anti-counterfeiting efficacy. The first dimensional anti-counterfeiting efficacy is achieved by the thermochromic liquid crystal layer. The thermochromic liquid crystal layer has no reflection color outside the operating temperature range of TLC material, and the entire device displays black background. The second and the third dimensional anti-counterfeiting efficacy are related to the polarization state of the incident light and the linear polarization direction, respectively. Only when the incident light is linearly polarized light and its polarization direction makes an angle of 45° or –45° with respect to the optical axis of the liquid crystal, will the device show the designed pattern. Consequently, our proposed anti-counterfeiting device is expected to provide a new idea for developing the anti-counterfeiting field.
      Corresponding author: Wang Xiao-Qian, xqwang@ecust.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1203700), the National Natural Science Foundation of China (Grant Nos. 61822504, 62275081, 62035008), the “Shuguang” Program of Shanghai, China (Grant No. 21SG29), the Shanghai Municipal Education Commission, China, and the Scientific Innovation Major Program of Shanghai Scientific and Technology Committee, China (Grant No. 2021-01-07-00-02-E00107).
    [1]

    Kim J M, Bak J M, Lim B, Jung Y J, Park B C, Park M J, Park J M, Lee H I, Jung S 2022 Nanoscale 14 5377Google Scholar

    [2]

    Gu Y Q, He C, Zhang Y Q, Lin L, Thackray B D, Ye J 2020 Nat. Commun. 11 516Google Scholar

    [3]

    Peng S, Sun S, Zhu Y, Qiu J, Yang H 2023 Virtual Phys. Prototyping 18 e2179929Google Scholar

    [4]

    Huo Y, Yang Z, Wilson T, Jiang C 2022 Adv. Mater. Interfaces 9 2200201Google Scholar

    [5]

    Xu C, Huang C, Yang D, Luo L, Huang S 2022 ACS Omega 7 7320Google Scholar

    [6]

    Yang D, Liao G, Huang S 2019 J. Mater. Chem. C 7 11776Google Scholar

    [7]

    Qin L, Liu X J, He K Y, Yu G D, Yuan H, Xu M, Li F Y, Yu Y L 2021 Nat. Commun. 12 699Google Scholar

    [8]

    Wei J, Ou W, Luo J, Kuang D 2022 Angew. Chem. Int. Ed. 61 e202207985

    [9]

    Xu J, Zhu T, Chen X, Zhao D, Li Y, Zhang L, Bi N, Gou J, Jia L 2023 J. Lumin. 256 119647Google Scholar

    [10]

    Yao W, Lan R, Li K, Zhang L 2021 ACS Appl. Mater. Interfaces 13 1424Google Scholar

    [11]

    Liu Y, Han F, Li F, Zhao Y, Chen M, Xu Z, Zheng X, Hu H, Yao J, Guo T, Lin W, Zheng Y, You B, Liu P, Li Y, Qian L 2019 Nat. Commun. 10 2409Google Scholar

    [12]

    Chen Q, Huang X, Yang D, Le Y, Pan Q, Li M, Zhang H, Kang J, Xiao X, Qiu J, Yang Z, Dong G 2023 Adv. Opt. Mater. 11 2300090Google Scholar

    [13]

    Han W, Wen X, Ding Y, Li Z, Lu M, Zhu H, Wang G, Yan J, Hong X 2022 Appl. Surf. Sci. 595 153563Google Scholar

    [14]

    Jung C, Kim G, Jeong M, Jang J, Dong Z G, Badloe T, Yang J K W, Rho J 2021 Chem. Rev. 121 13013Google Scholar

    [15]

    Yao B, Lin P, Sun H, Wang S, Luo C, Li Z, Du X, Ding Y, Xu Y, Wan H, Zhu W 2021 Adv. Opt. Mater. 9 2001434Google Scholar

    [16]

    Duan X, Kamin S, Liu N 2017 Nat. Commun. 8 14606Google Scholar

    [17]

    Jung C, Yang Y, Jang J, Badloe T, Lee T, Mun J, Moon S W, Rho J 2021 Nanophotonics 10 919

    [18]

    Daqiqeh Rezaei S, Dong Z, Wang H, Xu J, Wang H, Tavakkoli Yaraki M, Choon Hwa Goh K, Zhang W, Ghorbani S R, Liu X, Yang J K W 2023 Mater. Today 62 51Google Scholar

    [19]

    Wu Y, Sun R, Ren J, Zhang S, Wu S 2022 Adv. Funct. Mater. 33 2210047

    [20]

    Hou J, Li M, Song Y 2018 Angew. Chem. Int. Ed. 57 2544Google Scholar

    [21]

    Li T, Liu G, Kong H, Yang G, Wei G, Zhou X 2023 Coord. Chem. Rev. 475 214909Google Scholar

    [22]

    Rezaei S D, Dong Z G, Chan J Y E, Trisno J, Ng R J H, Ruan Q F, Qiu C W, Mortensen N A, Yang J K W 2021 ACS Photonics 8 18

    [23]

    Li J, Guan Z, Liu H, He Z, Li Z, Yu S, Zheng G 2023 Laser Photonics Rev. 17 2200342Google Scholar

    [24]

    Huang H, Li H, Yin J, Gu K, Guo J, Wang C 2023 Adv. Mater. 35 2211117Google Scholar

    [25]

    Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D, Tian H, Zhu W, Feringa B L 2022 Nat. Photonics 16 226

    [26]

    Hu H L, Liu B H, Li M Q, Zheng Z G, Zhu W H 2022 Adv. Mater. 34 2110170Google Scholar

    [27]

    Bisoyi H K, Li Q 2022 Chem. Rev. 122 4887Google Scholar

    [28]

    Chen P, Wei B, Hu W, Lu Y 2020 Adv. Mater. 32 1903665

    [29]

    Zhu L, Xu C T, Chen P, Zhang Y, Liu S, Chen Q, Ge S, Hu W, Lu Y 2022 Light-Sci. Appl. 11 135Google Scholar

    [30]

    Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J 2010 Nature 468 422Google Scholar

    [31]

    Mitov M 2012 Adv. Mater. 24 6260Google Scholar

    [32]

    Faryad M, Lakhtakia A 2014 Adv. Opt. Photonics 6 225Google Scholar

    [33]

    Liu B, Yuan C, Hu H, Sun P, Yu L, Zheng Z 2022 J. Mater. Chem. C 10 16924Google Scholar

    [34]

    Kelly J A, Giese M, Shopsowitz K E, Hamad W Y, MacLachlan M J 2014 Acc. Chem. Res. 47 1088Google Scholar

    [35]

    Bisoyi H K, Bunning T J, Li Q 2018 Adv. Mater. 30 1706512Google Scholar

    [36]

    Wang L, Li Q 2016 Adv. Funct. Mater. 26 10Google Scholar

    [37]

    Xu C, Chen P, Zhang Y, Fan X, Lu Y, Hu W 2021 Appl. Phys. Lett. 118 151102Google Scholar

    [38]

    Lu L F, Chen X F, Liu W, Li H K, Li Y, Yang Y G 2023 Liq. Cryst. DOI: 10.1080/02678292.2023. 2200266

    [39]

    Yang C, Wu B, Ruan J, Zhao P, Chen L, Chen D, Ye F 2021 Adv. Mater. 33 2006361Google Scholar

    [40]

    Williams M W, Wimberly J A, Stwodah R M, Nguyen J, D’Angelo P A, Tang C 2023 ACS Appl. Polym. Mater. 5 3065Google Scholar

    [41]

    Zhang Z, Chen Z, Wang Y, Zhao Y, Shang L 2022 Adv. Funct. Mater. 32 2107242Google Scholar

    [42]

    Ma L L, Wu S B, Hu W, Liu C, Chen P, Qian H, Wang Y D, Chi L F, Lu Y Q 2019 ACS Nano 13 13709Google Scholar

    [43]

    Liu C, Hsu C, Cheng K 2020 Opt. Laser Technol. 126 106060Google Scholar

    [44]

    van der Werff L C, Robinson A J, Kyratzis I L 2012 ACS Comb. Sci. 14 605Google Scholar

    [45]

    Pindak R S, Huang C C, Ho J T 1974 Phys. Rev. Lett. 32 43Google Scholar

  • 图 1  胆甾醇衍生物COC, CN, CD的化学结构

    Figure 1.  Chemical structures of the cholesterol derivatives COC, CN, and CD.

    图 2  集成式防伪器件的结构.

    Figure 2.  The structure of integrally anti-counterfeiting device.

    图 3  复合多维偏振型防伪器件的防伪工作原理示意图

    Figure 3.  Schematic drawing of working principle of composite multi-dimensional polarization dependent anti-counterfeiting device.

    图 4  样品 S2 的 (a) 反射光谱及 (b) 织构随温度的变化. 正交双箭头代表正交偏振片

    Figure 4.  The variation of (a) the reflection spectra and (b) the textures of sample S2 with temperature. Orthogonal double arrows represent the crossed polarizers.

    图 5  基于热致变色理论模型的拟合结果. 其中, 实线代表拟合值, 点代表实验测量值

    Figure 5.  The fitting results based on thermochromic theoretical model. Herein, the solid lines represent the fitting values and the points represent the experimental measurement values

    图 6  自然光及不同偏振方向入射光下样品图案的温度依赖性. Δα = αiαv 代表入射光偏振方向 αi 与箭头区域光轴方向 αv 之间的夹角. 白色箭头代表不同区域相应的光轴方向

    Figure 6.  Temperature dependence of sample pattern under natural light and linearly polarized light with different polarization directions. Δα = αiαv represents the angle between the polarization direction of the incident light αi and the optical axis direction of the arrow region αv. The white arrows represent the corresponding optical axis directions in different regions.

    图 7  线偏振入射光(αi = π/4)照射下, S1, S3及S6体系制备的多维偏振型防伪器件在10—40 ℃的热致变色效果

    Figure 7.  Thermochromic effect of multi-polarization security devices prepared by S1, S3 and S6 systems under linearly polarized incident light (αi = π/4) at 10 ℃ to 40 ℃

    表 1  不同样品中COC/CN/CD混合材料与TEB300的质量分数和温度参数

    Table 1.  Weight content and temperature parameters of COC/CN/CD material and TEB300 in different samples.

    样品COC/CN/
    CD/%
    TEB300/%可见光波段
    显色温度
    范围/℃
    温宽/℃
    S1100.0029.3—37.58.2
    S297.03.022.5—32.510.0
    S396.33.720.0—29.59.5
    S495.34.717.5—28.510.5
    S594.35.715.0—26.511.5
    DownLoad: CSV

    表 2  基于热致变色理论模型的各系数拟合值

    Table 2.  The fitting value of each coefficient based on thermochromic theoretical model.

    λ0/nmTc/℃c′/(nm·℃ν)ν
    S1198.57525.7421299.8930.699
    S2172.00418.0261607.3920.699
    S3141.65115.0141852.1180.699
    S4124.27411.4312188.5080.699
    S5120.6538.5542288.7440.699
    DownLoad: CSV
  • [1]

    Kim J M, Bak J M, Lim B, Jung Y J, Park B C, Park M J, Park J M, Lee H I, Jung S 2022 Nanoscale 14 5377Google Scholar

    [2]

    Gu Y Q, He C, Zhang Y Q, Lin L, Thackray B D, Ye J 2020 Nat. Commun. 11 516Google Scholar

    [3]

    Peng S, Sun S, Zhu Y, Qiu J, Yang H 2023 Virtual Phys. Prototyping 18 e2179929Google Scholar

    [4]

    Huo Y, Yang Z, Wilson T, Jiang C 2022 Adv. Mater. Interfaces 9 2200201Google Scholar

    [5]

    Xu C, Huang C, Yang D, Luo L, Huang S 2022 ACS Omega 7 7320Google Scholar

    [6]

    Yang D, Liao G, Huang S 2019 J. Mater. Chem. C 7 11776Google Scholar

    [7]

    Qin L, Liu X J, He K Y, Yu G D, Yuan H, Xu M, Li F Y, Yu Y L 2021 Nat. Commun. 12 699Google Scholar

    [8]

    Wei J, Ou W, Luo J, Kuang D 2022 Angew. Chem. Int. Ed. 61 e202207985

    [9]

    Xu J, Zhu T, Chen X, Zhao D, Li Y, Zhang L, Bi N, Gou J, Jia L 2023 J. Lumin. 256 119647Google Scholar

    [10]

    Yao W, Lan R, Li K, Zhang L 2021 ACS Appl. Mater. Interfaces 13 1424Google Scholar

    [11]

    Liu Y, Han F, Li F, Zhao Y, Chen M, Xu Z, Zheng X, Hu H, Yao J, Guo T, Lin W, Zheng Y, You B, Liu P, Li Y, Qian L 2019 Nat. Commun. 10 2409Google Scholar

    [12]

    Chen Q, Huang X, Yang D, Le Y, Pan Q, Li M, Zhang H, Kang J, Xiao X, Qiu J, Yang Z, Dong G 2023 Adv. Opt. Mater. 11 2300090Google Scholar

    [13]

    Han W, Wen X, Ding Y, Li Z, Lu M, Zhu H, Wang G, Yan J, Hong X 2022 Appl. Surf. Sci. 595 153563Google Scholar

    [14]

    Jung C, Kim G, Jeong M, Jang J, Dong Z G, Badloe T, Yang J K W, Rho J 2021 Chem. Rev. 121 13013Google Scholar

    [15]

    Yao B, Lin P, Sun H, Wang S, Luo C, Li Z, Du X, Ding Y, Xu Y, Wan H, Zhu W 2021 Adv. Opt. Mater. 9 2001434Google Scholar

    [16]

    Duan X, Kamin S, Liu N 2017 Nat. Commun. 8 14606Google Scholar

    [17]

    Jung C, Yang Y, Jang J, Badloe T, Lee T, Mun J, Moon S W, Rho J 2021 Nanophotonics 10 919

    [18]

    Daqiqeh Rezaei S, Dong Z, Wang H, Xu J, Wang H, Tavakkoli Yaraki M, Choon Hwa Goh K, Zhang W, Ghorbani S R, Liu X, Yang J K W 2023 Mater. Today 62 51Google Scholar

    [19]

    Wu Y, Sun R, Ren J, Zhang S, Wu S 2022 Adv. Funct. Mater. 33 2210047

    [20]

    Hou J, Li M, Song Y 2018 Angew. Chem. Int. Ed. 57 2544Google Scholar

    [21]

    Li T, Liu G, Kong H, Yang G, Wei G, Zhou X 2023 Coord. Chem. Rev. 475 214909Google Scholar

    [22]

    Rezaei S D, Dong Z G, Chan J Y E, Trisno J, Ng R J H, Ruan Q F, Qiu C W, Mortensen N A, Yang J K W 2021 ACS Photonics 8 18

    [23]

    Li J, Guan Z, Liu H, He Z, Li Z, Yu S, Zheng G 2023 Laser Photonics Rev. 17 2200342Google Scholar

    [24]

    Huang H, Li H, Yin J, Gu K, Guo J, Wang C 2023 Adv. Mater. 35 2211117Google Scholar

    [25]

    Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D, Tian H, Zhu W, Feringa B L 2022 Nat. Photonics 16 226

    [26]

    Hu H L, Liu B H, Li M Q, Zheng Z G, Zhu W H 2022 Adv. Mater. 34 2110170Google Scholar

    [27]

    Bisoyi H K, Li Q 2022 Chem. Rev. 122 4887Google Scholar

    [28]

    Chen P, Wei B, Hu W, Lu Y 2020 Adv. Mater. 32 1903665

    [29]

    Zhu L, Xu C T, Chen P, Zhang Y, Liu S, Chen Q, Ge S, Hu W, Lu Y 2022 Light-Sci. Appl. 11 135Google Scholar

    [30]

    Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J 2010 Nature 468 422Google Scholar

    [31]

    Mitov M 2012 Adv. Mater. 24 6260Google Scholar

    [32]

    Faryad M, Lakhtakia A 2014 Adv. Opt. Photonics 6 225Google Scholar

    [33]

    Liu B, Yuan C, Hu H, Sun P, Yu L, Zheng Z 2022 J. Mater. Chem. C 10 16924Google Scholar

    [34]

    Kelly J A, Giese M, Shopsowitz K E, Hamad W Y, MacLachlan M J 2014 Acc. Chem. Res. 47 1088Google Scholar

    [35]

    Bisoyi H K, Bunning T J, Li Q 2018 Adv. Mater. 30 1706512Google Scholar

    [36]

    Wang L, Li Q 2016 Adv. Funct. Mater. 26 10Google Scholar

    [37]

    Xu C, Chen P, Zhang Y, Fan X, Lu Y, Hu W 2021 Appl. Phys. Lett. 118 151102Google Scholar

    [38]

    Lu L F, Chen X F, Liu W, Li H K, Li Y, Yang Y G 2023 Liq. Cryst. DOI: 10.1080/02678292.2023. 2200266

    [39]

    Yang C, Wu B, Ruan J, Zhao P, Chen L, Chen D, Ye F 2021 Adv. Mater. 33 2006361Google Scholar

    [40]

    Williams M W, Wimberly J A, Stwodah R M, Nguyen J, D’Angelo P A, Tang C 2023 ACS Appl. Polym. Mater. 5 3065Google Scholar

    [41]

    Zhang Z, Chen Z, Wang Y, Zhao Y, Shang L 2022 Adv. Funct. Mater. 32 2107242Google Scholar

    [42]

    Ma L L, Wu S B, Hu W, Liu C, Chen P, Qian H, Wang Y D, Chi L F, Lu Y Q 2019 ACS Nano 13 13709Google Scholar

    [43]

    Liu C, Hsu C, Cheng K 2020 Opt. Laser Technol. 126 106060Google Scholar

    [44]

    van der Werff L C, Robinson A J, Kyratzis I L 2012 ACS Comb. Sci. 14 605Google Scholar

    [45]

    Pindak R S, Huang C C, Ho J T 1974 Phys. Rev. Lett. 32 43Google Scholar

  • [1] Ye Fan, Li Su-Wen, Mou Fu-Sheng, Wang Song, Wang Zhi-Duo, Tang Yu-Jie, Luo Jing. Research and application of differential optical absorption two-dimensional detection system for rotorcraft unmanned aerial vehicle. Acta Physica Sinica, 2024, 73(18): 180701. doi: 10.7498/aps.73.20240909
    [2] Jia Chao-Yang, Gao Dang-Li, Yu Jia, Hu Yuan-Yuan, Chai Rui-Peng, Pang Qing, Zhang Xiang-Yu. Multicolor and multimode luminescence regulation and anti-counterfeiting application of lanthanide ions doped Li0.9K0.1NbO3 phosphors. Acta Physica Sinica, 2023, 72(22): 224210. doi: 10.7498/aps.72.20230517
    [3] Xu Ping, Yuan Xia, Yang Tuo, Huang Hai-Xuan, Tang Shao-Tuo, Huang Yan-Yan, Xiao Yu-Fei, Peng Wen-Da. Design of embedded tri-color shift device. Acta Physica Sinica, 2017, 66(12): 124201. doi: 10.7498/aps.66.124201
    [4] Dai Qin, Wu Jie, Wu Xiao-Jiao, Wu Ri-Na, Peng Zeng-Hui, Li Da-Yu. Study of laser action in dye-doped polymer dispersed cholesteric liquid crystal film. Acta Physica Sinica, 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [5] Liu Li-Juan, Huang Wen-Bin, Diao Zhi-Hui, Zhang Gui-Yang, Peng Zeng-Hui, Liu Yong-Gang, Xuan Li. Low threshold distributed feedback laser based on scaffolding morphologic and holographic polymer dispersed liquid crystal gratings. Acta Physica Sinica, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [6] Huang Wen-Bin, Deng Shu-Peng, Liu Yong-Gang, Peng Zeng-Hui, Yao Li-Shuang, Xuan Li. Study on anisotropic diffraction properties of holographic dispersed liquid crystal transmission grating. Acta Physica Sinica, 2012, 61(9): 094208. doi: 10.7498/aps.61.094208
    [7] Wang Dou-Dou, Wang Li-Li, Li Dong-Dong. Design and analysis of thermally tunable liquid-crystal-filled microstructured polymer optical fiber. Acta Physica Sinica, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [8] Li Wen-Cui, Liu Yong-Gang, Xuan Li. Effect of surface rubbing alignment on electro-optical properties of holographic polymer dispersed liquid-crystal gratings. Acta Physica Sinica, 2011, 60(4): 046101. doi: 10.7498/aps.60.046101
    [9] Deng Shu-Peng, Li Wen-Cui, Huang Wen-Bin, Liu Yong-Gang, Lu Xing-Hai, Xuan Li. Distributed-feedback lasing from dye-doped holographic polymer dispersed liquid crystal transmission grating. Acta Physica Sinica, 2011, 60(5): 056102. doi: 10.7498/aps.60.056102
    [10] Wang Xiao-Dong, Ouyang Jie, Su Jin. Simulation of microstructure of liquid-crystalline polymers in nonhomogenous shear flow by EFG method. Acta Physica Sinica, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [11] Zheng Ji-Hong, Zhong Yang-Wan, Wen Ken, Luo Xin-Sheng, Zhuang Song-Lin. Diffraction and properties of holographic polymer dispersed liquid crystal switchable lens. Acta Physica Sinica, 2010, 59(3): 1831-1838. doi: 10.7498/aps.59.1831
    [12] Tian Yong, Pan Xu, Wang Chang-Shun, Zhang Xiao-Qiang, Zeng Yi. Two-dimensional polarization holographic recordings in azobenzene liquid-crystalline polymer thin films. Acta Physica Sinica, 2009, 58(10): 6979-6984. doi: 10.7498/aps.58.6979
    [13] Zheng Zhi-Gang, Li Wen-Cui, Liu Yong-Gang, Xuan Li. Electrically tunable multiplexed grating with alternate liquid crystal-polymer structure. Acta Physica Sinica, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [14] He Lan, Shen Yun-Wen, K. L. Yung, Xu Yan. A new molecular model for main-chain liquid crystalline polymers based on molecular dynamics simulations. Acta Physica Sinica, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [15] Zhang Bin, Liu Yan-Jun, Xu Ke-Shu. Electro-optical properties of holographic polymer dispersed liquid crystal devices. Acta Physica Sinica, 2004, 53(6): 1850-1855. doi: 10.7498/aps.53.1850
    [16] Zhang Bin, Liu Yan-Jun, Xu Ke Shu, Jia Yu. Optimization of diffraction properties for holographic polymer dispersed liquid crystal. Acta Physica Sinica, 2003, 52(1): 91-95. doi: 10.7498/aps.52.91
    [17] LIANG ZHONG-CHENG, MING HAI, WANG PEI, ZHANG JIANG-YING, LONG YUN-ZE, XIA YONG, XIE JIAN-PING, ZHANG QI-JIN. NONLINEARLY OPTICAL-INDUCED BIREFRINGENCE IN AZO LIQUID CRYSTAL POLYMERS. Acta Physica Sinica, 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
    [18] Liu Hong. . Acta Physica Sinica, 2000, 49(4): 781-785. doi: 10.7498/aps.49.781
    [19] LI JIAN-JUN, WANG ZONG-KAI, LING ZHI-HUA, IAN YAN-QING, HUANG XI-MIN. STUDY OF THE STRIPED TEXTURE IN THE POLYMER NETWORK STABILIZED FERROELECTRIC LIQUID CRYSTAL CELLS. Acta Physica Sinica, 1998, 47(8): 1311-1317. doi: 10.7498/aps.47.1311
    [20] LIU HONG. PHASE TRANSITION OF COMB POLYMER NEMATIC LIQUID CRYSTAL. Acta Physica Sinica, 1992, 41(4): 609-616. doi: 10.7498/aps.41.609
Metrics
  • Abstract views:  3591
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2023
  • Accepted Date:  22 June 2023
  • Available Online:  07 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回