Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research and application of differential optical absorption two-dimensional detection system for rotorcraft unmanned aerial vehicle

Ye Fan Li Su-Wen Mou Fu-Sheng Wang Song Wang Zhi-Duo Tang Yu-Jie Luo Jing

Citation:

Research and application of differential optical absorption two-dimensional detection system for rotorcraft unmanned aerial vehicle

Ye Fan, Li Su-Wen, Mou Fu-Sheng, Wang Song, Wang Zhi-Duo, Tang Yu-Jie, Luo Jing
cstr: 32037.14.aps.73.20240909
PDF
HTML
Get Citation
  • In order to meet the technical requirements for miniaturization, multi-angle, multi-altitude, and fast simultaneous acquisition of atmospheric pollutants, this study develops an integrated, lightweight, and cost-effective airborne differential optical absorption spectroscopy (DOAS) system. This system is designed in order to be used on a rotorcraft unmanned aerial vehicle (UAV) platform for monitoring atmospheric pollutants. The compositions of the hexacopter UAV platform and the airborne DOAS system are detailed in this work. The system includes a multi axis differential optical absorption spectroscopy (MAX-DOAS) spectral acquisition system, a control system, and a flight environment monitoring system. Commands are sent from a computer via serial communication to drive a gimbal, controlling the azimuth angle and elevation angle of the telescope, with a camera recording the light obstruction. The sunlight scattered by the atmosphere is collected by the telescope and transmitted via fiber optics to the spectrometer, which then transmits the data to the control computer. Additionally, the system captures data of altitude, temperature, humidity, and GPS location during flight, and filters out spectral data obtained under abnormal flight conditions. Stability studies indicate that the mean angular deviations for yaw, roll, and pitch are 0.07°, –0.13°, and –0.12° respectively, which meet the requirements for monitoring stability. Comparative experiments with a commercial ground-based DOAS system show that the correlation coefficients between the monitoring data of both systems are both greater than 0.92, confirming the reliability of the airborne system. In field flight experiments, the airborne DOAS system conducts observations at altitudes of 30 m, 60 m, and 90 m, with the elevation angle set at 0° and the azimuth angle measured every 30° from 0° to 360°. The system successfully obtains the concentration distributions of NO2, SO2, and HCHO at different azimuth angles and altitudes. The results indicate that the concentrations of these three gases decrease with altitude increasing, with higher concentrations observed in the southeast direction, indicating the presence of pollution sources in that direction. Further analysis with considering altitude changes indicates that the rate of decrease in NO2 concentration and SO2 concentration slow down with altitude increasing, while the rate of decrease in HCHO remains relatively constant. These findings indicate that this system effectively meets the technical requirements for simultaneous, rapid, multi-angle, and multi-altitude detection of atmospheric pollutants, providing essential support for the detailed monitoring of complex urban micro-environments.
      Corresponding author: Li Su-Wen, swli@chnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41875040), the Innovation Team Project of Anhui Educational Committee, China (Grant No. 2023AH010043), the Natural Science Foundation of Anhui Province, China (Grant No. 2208085QF215), and the Natural Science Research Project of Anhui Educational Committee, China (Grant No. 2023AH050338).
    [1]

    Su W J, Liu C, Chan K L, Hu Q H, Liu H, Ji X G, Zhu Y Z, Liu T, Zhang C X, Chen Y J, Liu J G 2020 Atmos. Meas. Tech. 13 6271Google Scholar

    [2]

    Wu S S, Huang B, Wang J H, He L J, Wang Z Y, Yan Z, Lao X Q, Zhang F, Liu R Y, Du Z H 2021 Environ. Pollut. 273 116456Google Scholar

    [3]

    徐晋, 谢品华, 司福祺, 李昂, 刘文清 2012 物理学报 61 282Google Scholar

    Xu J, Xie P H, Si F Q, Li A, Liu W Q 2012 Acta Phys. Sin. 61 282Google Scholar

    [4]

    梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国 2017 物理学报 66 090704Google Scholar

    Liang S X, Qin M, Duan J, Fang W, Li A, Xu J, Lu X, Tang K, Xie P H, Liu J G 2017 Acta Phys. Sin. 66 090704Google Scholar

    [5]

    Zhang H K, Huang B, Zhang M, Cao K, Yu L 2015 Int. J. Remote Sens. 36 4411Google Scholar

    [6]

    Liu M X, Liu X N, Wu L, Zou X Y, Jiang T, Zhao B Y 2018 Remote Sens. 10 772Google Scholar

    [7]

    Zhou B, Zhang S B, Xue R B, Li J Y, Wang S S 2023 J. Environ. Sci. 123 3Google Scholar

    [8]

    Pang X B, Chen L, Shi K L, Wu F, Chen J M, Fang S X, Wang J L, Xu M 2021 Sci. Total Environ. 764 142828Google Scholar

    [9]

    Wu C, Liu B, Wu D, Yang H L, Mao X, Tan J, Liang Y, Sun J Y, Xia R, Sun J R, He G W, Li M, Deng T, Zhou Z, Li Y J 2021 Sci. Total Environ. 801 149689Google Scholar

    [10]

    Li X M, Xie P H, Li A, Xu J, Ren H M, Ren B, Li Y Y, Li J 2021 J. Environ. Sci. 107 1Google Scholar

    [11]

    Arroyo P, Gómez-Suárez J, Herrero J L, Lozano J 2022 Sens. Actuators B Chem. 364 131815Google Scholar

    [12]

    Platt U, Stutz J, Platt U, Stutz J 2008 Differential Absorption Spectroscopy (Berlin Heidelberg: Springer) pp135–174

    [13]

    Liu C, Xing C Z, Hu Q H, Wang S S, Zhao S H, Gao M 2022 Earth Sci. Rev. 226 103958Google Scholar

    [14]

    Chen X, Chen Y P, Chen Y X, Fang Y X, Yu J X, Sun Y 2023 IEEE International Geoscience and Remote Sensing Symposium United States of America, July 16–21, 2023 p3866

    [15]

    Xing C Z, Liu C, Li Q H, Wang S S, Tan W, Zou T L, Wang Z, Lu C 2024 Sci. Total Environ. 915 169159Google Scholar

    [16]

    Li L, Lu C, Chan P W, Zhang X, Yang H L, Lan Z J, Zhang W H, Liu Y W, Pan L, Zhang L 2020 Atmos. Environ. 220 117083Google Scholar

    [17]

    Mo Z W, Huang S, Yuan B, Pei C L, Song Q C, Qi J P, Wang M, Wang B L, Wang C, Shao M 2022 Environ. Pollut. 292 118454Google Scholar

    [18]

    Chen L, Pang X B, Li J J, Xing B, An T C, Yuan K B, Dai S, Wu Z T, Wang S Q, Wang Q, Mao Y P, Chen J M 2022 Sci. Total Environ. 845 157113Google Scholar

    [19]

    Zheng Z L, Wang H C, Chen X R, Wang J, Li X, Lu K D, Yu G H, Huang X F, Fan S J 2024 Atmos. Environ. 321 120361Google Scholar

    [20]

    Hedworth H, Page J, Sohl J, Saad T 2022 Drones 6 253Google Scholar

    [21]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2015 物理学报 64 34217Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2015 Acta Phys. Sin. 64 34217Google Scholar

    [22]

    Mou F S, Luo J, Zhang Q J, Zhou C, Wang S, Ye F, Li S W, Sun Y W 2023 Atmosphere 14 739Google Scholar

    [23]

    Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Radiat. Transf. 59 171Google Scholar

    [24]

    Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hartmann M, Kromminga H, Bovensmann H, Frerick J, Burrows J P 2003 J. Photoch. Photobio. A 157 167Google Scholar

    [25]

    Meller R, Moortgat G K 2000 J. Geophys. Res 105 7089Google Scholar

    [26]

    Serdyuchenko A, Gorshelev V, Weber M, Chehade W, Burrows J P 2014 Atmos. Meas. Tech. 7 625Google Scholar

    [27]

    Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [28]

    Fleischmann O C, Hartmann M, Burrows J P, Orphal J 2004 J. Photochem. Photobiol. A Chem. 168 117Google Scholar

  • 图 1  旋翼无人机平台实物图

    Figure 1.  Photograph of the rotorcraft unmanned aerial vehicle platform.

    图 2  机载差分光学吸收二维系统结构示意图

    Figure 2.  Schematic diagram of the airborne differential optical absorption 2D system.

    图 3  旋翼无人机载差分光学吸收二维探测系统实物图

    Figure 3.  Photograph of the differential optical absorption 2D detection System mounted on a rotorcraft unmanned aerial vehicle.

    图 4  机载系统3种飞行姿态的角度偏差图 (a) 500 ms采样数据; (b)固定间隔采样数据

    Figure 4.  Angle deviation diagram of the three flight attitudes of the airborne system: (a) 500 ms sampled data; (b) data sampled at fixed intervals.

    图 5  机载系统与商用地基MAX-DOAS观测的NO2差分斜柱浓度时间序列对比图 (a)仰角为1°; (b)仰角为2°; (c)仰角为5°; (d)仰角为6°; (e)仰角为8°; (f)仰角为15°

    Figure 5.  Comparison of NO2 differential slant column density time series observed by airborne system and commercial ground-based MAX-DOAS: (a) Elevation angle of 1°; (b) elevation angle of 2°; (c) elevation angle of 5°; (d) elevation angle of 6°; (e) elevation angle of 8°; (f) elevation angle of 15°.

    图 6  机载系统与商用地基MAX-DOAS观测的NO2差分斜柱浓度的对比相关图 (a)仰角为1°; (b)仰角为2°; (c)仰角为5°; (d)仰角为6°; (e)仰角为8°; (f)仰角为15°

    Figure 6.  Comparison correlation plot of NO2 differential slant column density observed by airborne system and commercial ground-based MAX-DOAS: (a) Elevation angle of 1°; (b) elevation angle of 2°; (c) elevation angle of 5°; (d) elevation angle of 6°; (e) elevation angle of 8°; (f) elevation angle of 15°.

    图 7  无人机外场实验 (a)测量地点; (b)实景图

    Figure 7.  UAV field experiment: (a) Measurement site; (b) real-world image.

    图 8  无人机测量方式图

    Figure 8.  Diagram of UAV measurement method.

    图 9  NO2, SO2, HCHO光谱拟合效果实例 (a) NO2光谱拟合; (b) NO2斜柱浓度拟合残差; (c) SO2光谱拟合; (d) SO2斜柱浓度拟合残差; (e) HCHO光谱拟合; (f) HCHO斜柱浓度拟合残差

    Figure 9.  Examples of spectral fitting results for NO2, SO2 and HCHO: (a) NO2 spectral fitting; (b) fitting residuals of NO2 slant column density; (c) SO2 spectral fitting; (d) fitting residuals of SO2 slant column density; (e) HCHO spectral fitting; (f) fitting residuals of HCHO slant column density.

    图 10  水平观测下不同高度的NO2浓度分布图 (a)高度为30 m; (b)高度为60 m; (c)高度为90 m

    Figure 10.  Distribution of NO2 concentration at different heights under horizontal observation: (a) Height of 30 m; (b) height of 60 m; (c) height of 90 m

    图 12  水平观测下不同高度的HCHO浓度分布图 (a)高度为30 m; (b)高度为60 m; (c)高度为90 m

    Figure 12.  Distribution of HCHO concentration at different heights under horizontal observation: (a) Height of 30 m; (b) height of 60 m; (c) height of 90 m.

    图 13  观测期间0°方位角下不同高度的NO2, SO2, HCHO浓度变化图 (a) NO2; (b) SO2; (c) HCHO

    Figure 13.  Variation of NO2, SO2, HCHO concentrations at different heights under 0° azimuth during the observation period: (a) NO2; (b) SO2; (c) HCHO.

    图 11  水平观测下不同高度的SO2浓度分布图 (a)高度为30 m; (b)高度为60 m; (c)高度为90 m

    Figure 11.  Distribution of SO2 concentration at different heights under horizontal observation: (a) Height of 30 m; (b) height of 60 m; (c) height of 90 m.

    表 1  具体实验拟合参数

    Table 1.  Specific parameters of experimental fitting.

    ParameterNO2SO2HCHO
    Fitting wavelength/nm337—370309—323324—342
    Polynomial degree555
    Intensity offsetConstantConstantConstant
    NO2220 K, 294 K[23]294 K[23]294 K[23]
    SO2293 K[24]
    HCHO297 K[25]297 K[25]
    O3223 K, 243 K[26]223 K, 243 K[26]223 K, 243 K[26]
    O4293 K[27]293 K[27]
    Bro223 K[28]
    RingCalculated with FRSCalculated with FRSCalculated with FRS
    DownLoad: CSV
  • [1]

    Su W J, Liu C, Chan K L, Hu Q H, Liu H, Ji X G, Zhu Y Z, Liu T, Zhang C X, Chen Y J, Liu J G 2020 Atmos. Meas. Tech. 13 6271Google Scholar

    [2]

    Wu S S, Huang B, Wang J H, He L J, Wang Z Y, Yan Z, Lao X Q, Zhang F, Liu R Y, Du Z H 2021 Environ. Pollut. 273 116456Google Scholar

    [3]

    徐晋, 谢品华, 司福祺, 李昂, 刘文清 2012 物理学报 61 282Google Scholar

    Xu J, Xie P H, Si F Q, Li A, Liu W Q 2012 Acta Phys. Sin. 61 282Google Scholar

    [4]

    梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国 2017 物理学报 66 090704Google Scholar

    Liang S X, Qin M, Duan J, Fang W, Li A, Xu J, Lu X, Tang K, Xie P H, Liu J G 2017 Acta Phys. Sin. 66 090704Google Scholar

    [5]

    Zhang H K, Huang B, Zhang M, Cao K, Yu L 2015 Int. J. Remote Sens. 36 4411Google Scholar

    [6]

    Liu M X, Liu X N, Wu L, Zou X Y, Jiang T, Zhao B Y 2018 Remote Sens. 10 772Google Scholar

    [7]

    Zhou B, Zhang S B, Xue R B, Li J Y, Wang S S 2023 J. Environ. Sci. 123 3Google Scholar

    [8]

    Pang X B, Chen L, Shi K L, Wu F, Chen J M, Fang S X, Wang J L, Xu M 2021 Sci. Total Environ. 764 142828Google Scholar

    [9]

    Wu C, Liu B, Wu D, Yang H L, Mao X, Tan J, Liang Y, Sun J Y, Xia R, Sun J R, He G W, Li M, Deng T, Zhou Z, Li Y J 2021 Sci. Total Environ. 801 149689Google Scholar

    [10]

    Li X M, Xie P H, Li A, Xu J, Ren H M, Ren B, Li Y Y, Li J 2021 J. Environ. Sci. 107 1Google Scholar

    [11]

    Arroyo P, Gómez-Suárez J, Herrero J L, Lozano J 2022 Sens. Actuators B Chem. 364 131815Google Scholar

    [12]

    Platt U, Stutz J, Platt U, Stutz J 2008 Differential Absorption Spectroscopy (Berlin Heidelberg: Springer) pp135–174

    [13]

    Liu C, Xing C Z, Hu Q H, Wang S S, Zhao S H, Gao M 2022 Earth Sci. Rev. 226 103958Google Scholar

    [14]

    Chen X, Chen Y P, Chen Y X, Fang Y X, Yu J X, Sun Y 2023 IEEE International Geoscience and Remote Sensing Symposium United States of America, July 16–21, 2023 p3866

    [15]

    Xing C Z, Liu C, Li Q H, Wang S S, Tan W, Zou T L, Wang Z, Lu C 2024 Sci. Total Environ. 915 169159Google Scholar

    [16]

    Li L, Lu C, Chan P W, Zhang X, Yang H L, Lan Z J, Zhang W H, Liu Y W, Pan L, Zhang L 2020 Atmos. Environ. 220 117083Google Scholar

    [17]

    Mo Z W, Huang S, Yuan B, Pei C L, Song Q C, Qi J P, Wang M, Wang B L, Wang C, Shao M 2022 Environ. Pollut. 292 118454Google Scholar

    [18]

    Chen L, Pang X B, Li J J, Xing B, An T C, Yuan K B, Dai S, Wu Z T, Wang S Q, Wang Q, Mao Y P, Chen J M 2022 Sci. Total Environ. 845 157113Google Scholar

    [19]

    Zheng Z L, Wang H C, Chen X R, Wang J, Li X, Lu K D, Yu G H, Huang X F, Fan S J 2024 Atmos. Environ. 321 120361Google Scholar

    [20]

    Hedworth H, Page J, Sohl J, Saad T 2022 Drones 6 253Google Scholar

    [21]

    刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2015 物理学报 64 34217Google Scholar

    Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2015 Acta Phys. Sin. 64 34217Google Scholar

    [22]

    Mou F S, Luo J, Zhang Q J, Zhou C, Wang S, Ye F, Li S W, Sun Y W 2023 Atmosphere 14 739Google Scholar

    [23]

    Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Radiat. Transf. 59 171Google Scholar

    [24]

    Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hartmann M, Kromminga H, Bovensmann H, Frerick J, Burrows J P 2003 J. Photoch. Photobio. A 157 167Google Scholar

    [25]

    Meller R, Moortgat G K 2000 J. Geophys. Res 105 7089Google Scholar

    [26]

    Serdyuchenko A, Gorshelev V, Weber M, Chehade W, Burrows J P 2014 Atmos. Meas. Tech. 7 625Google Scholar

    [27]

    Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [28]

    Fleischmann O C, Hartmann M, Burrows J P, Orphal J 2004 J. Photochem. Photobiol. A Chem. 168 117Google Scholar

  • [1] Wang Ke-Jian, Teng Hao, Xing Xiao-Wei, Dong Shuo, Cao Kai-Qiang, Jiang Yu-Jiao, Zhao Kun, Zhu Jiang-Feng, Liu Wen-Jun, Wei Zhi-Yi. Attosecond delay locking of large arm pump-probe system. Acta Physica Sinica, 2024, 73(19): 194201. doi: 10.7498/aps.73.20241061
    [2] Hu Chen-Yang, Liang Jia-Luo, Zheng Ri-Yi, Lu Jiu-Yang, Deng Wei-Yin, Huang Xue-Qin, Liu Zheng-You. One-dimensional synthetic waterborne phononic crystals. Acta Physica Sinica, 2024, 73(10): 104301. doi: 10.7498/aps.73.20240298
    [3] Chen Si, Zhang Hai-Yang, Jin Fa-Hong, Wang Lin, Zhao Chang-Ming. Research on multi-dimensional micro-motion feature extraction of moving targets. Acta Physica Sinica, 2024, 73(7): 074204. doi: 10.7498/aps.73.20231691
    [4] Wang Bo-Ya, Yang Xiao-Chun, Lu Sheng-Rong, Tang Yong-Ping, Hong Shu-Quan, Jiang Hui-Yuan. A multidimensional node importance evaluation method based on graph convolutional networks. Acta Physica Sinica, 2024, 73(22): 226401. doi: 10.7498/aps.73.20240937
    [5] He Guang-Long, Xue Li, Wu Cheng, Li Hui, Yin Rui, Dong Da-Xing, Wang Hao, Xu Chi, Huang Hui-Xin, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Xia Ling-Hao, Zhang La-Bao, Wu Pei-Heng. Miniaturized superconducting single-photon detection system for airborne platform. Acta Physica Sinica, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [6] Zhu Yu-Wen, Yuan Cong-Long, Liu Bing-Hui, Wang Xiao-Qian, Zheng Zhi-Gang. LCP /TLC based composite multi-dimensional polarization-dependent anti-counterfeiting device. Acta Physica Sinica, 2023, 72(17): 174206. doi: 10.7498/aps.72.20230850
    [7] Wei Rong-Yu, Li Jun, Zhang Da-Ming, Wang Wei-Hao. Research on method of constant false alarm rate of entangled state quantum detection system. Acta Physica Sinica, 2022, 71(1): 010303. doi: 10.7498/aps.71.20211121
    [8] Research on Constant False Alarm Detection Method of Entangled State Quantum Detection System. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211121
    [9] Zhang Da-Jun. Discrete integrable systems: Multidimensional consistency. Acta Physica Sinica, 2020, 69(1): 010202. doi: 10.7498/aps.69.20191647
    [10] Zha Bing-Ting, Yuan Hai-Lu, Ma Shao-Jie, Chen Guang-Song. Influence of single-beam expanding scanning laser circumferential detection system parameters on detection capability. Acta Physica Sinica, 2019, 68(7): 070601. doi: 10.7498/aps.68.20181860
    [11] Wang Ming-Jun, Wei Ya-Fei, Ke Xi-Zheng. Laser propagation transmission properties characteristics between airborne communication terminal and unmanned aerial vehicle target in complex atmospheric background. Acta Physica Sinica, 2019, 68(9): 094203. doi: 10.7498/aps.68.20182052
    [12] Kou Tian, Yu Lei, Zhou Zhong-Liang, Wang Hai-Yan, Ruan Cheng-Wei, Liu Hong-Qiang. Spectral radiant characteristic of airborne optoelectronic system detecting aerial maneuver target. Acta Physica Sinica, 2017, 66(4): 049501. doi: 10.7498/aps.66.049501
    [13] Wang Pan-Pan, Zhou Chen, Song Yang, Zhang Yuan-Nong, Zhao Zheng-Yu. A numerical study of effects on detection height of a radio acoustic sounding system influenced by atmospheric wind and temperature. Acta Physica Sinica, 2015, 64(10): 100205. doi: 10.7498/aps.64.100205
    [14] Liu Jin, Si Fu-Qi, Zhou Hai-Jin, Zhao Ming-Jie, Dou Ke, Wang Yu, Liu Wen-Qing. Observation of two-dimensional distributions of NO2 with airborne Imaging DOAS technology. Acta Physica Sinica, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [15] Zhu Guo-Liang, Hu Ren-Zhi, Xie Pin-Hua, Chen Hao, Qin Min, Fang Wu, Wang Dan, Xing Xing-Biao. Calibration system for OH radicals based on differential optical absorption spectroscopy. Acta Physica Sinica, 2015, 64(8): 080703. doi: 10.7498/aps.64.080703
    [16] Ru Chang-Jian, Wei Rui-Xuan, Shen Dong. Study on stability control mechanism of multiple unmanned aerial vehicle cooperative system. Acta Physica Sinica, 2014, 63(22): 220202. doi: 10.7498/aps.63.220202
    [17] Xu Ning, Chen Xue-Lian, Yang Geng. Research on the algorithm of multiple-image encryption based on the improved virtual optical imaging. Acta Physica Sinica, 2013, 62(8): 084202. doi: 10.7498/aps.62.084202
    [18] Wang Gui-Shi, Yi Hong-Ming, Cai Ting-Dong, Wang Lei, Tan Tu, Zhang Wei-Jun, Gao Xiao-Ming. Research on the real-time measurement system based on QEPAS. Acta Physica Sinica, 2012, 61(12): 120701. doi: 10.7498/aps.61.120701
    [19] Ouyang Xiao-Ping, Li Zhen-Fu, Wang Qun-Shu, Huo Yu-Kun, Ma Yian-Liang, Zhang Qian-Mei, Zhang Guo-Guang, Jin Yu-Ren. A high sensitive fission neutron detector system with a lead slot collimator. Acta Physica Sinica, 2005, 54(10): 4643-4647. doi: 10.7498/aps.54.4643
    [20] Sun Qiang, Yu Bin, Wang Zhao-Qi, Mu Guo-Guang, Lu Zhen-Wu. Study on hyperspectral detection system with the harmonic diffractive element in infrared dual-band. Acta Physica Sinica, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
Metrics
  • Abstract views:  1691
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2024
  • Accepted Date:  15 August 2024
  • Available Online:  20 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回