-
现代防伪技术的发展可有效抑制和打击伪造仿冒行为, 在信息安全、国防和经济等领域具有重要意义. 然而, 实现多维度、集成化、难复制且便于检测的光学防伪器件仍是一个挑战. 本文设计了一种基于图案化液晶聚合物(LCP)薄膜与热致变色胆甾相(TLC)复合而成的多维偏振型防伪器件, 它具有偏振态显现-隐藏、颜色调谐范围广、操作便捷、集成度及安全性高等优点. 对于特定偏振态的入射光, 图案化向列相LCP层可对其进行区域化相位编辑产生偏振态调制, 而TLC层对该入射光进行选择性反射, 因此巧妙地实现了一种图案化结构色防伪标签. 该防伪器件可通过调整入射光偏振方向实现彩色图案的显现、隐藏、色彩调节及图底转换. 此外, 该器件中的TLC层不仅可通过灵活设计体系配比, 满足不同环境温度对该防伪器件的应用需求, 增强其环境适用性, 还可便捷地利用体温进行加热, 实现图案的动态实时宽谱域色彩调制及可逆的图案擦除, 进一步增强其防伪维度与安全性. 本文所述器件为防伪领域的发展提供了崭新的思路.Modern anti-counterfeiting technology can effectively suppress and combat forgery and counterfeiting behaviors, which is of great significance in information security, national defense and economy. However, the realization of multi-dimensional, integrated, difficult-to-copy and easy-to-detect optical anti-counterfeiting devices is still a challenge. In this paper, a multi-dimensional and polarization-dependent anti-counterfeiting device with structure color is designed, which is composed of patterned liquid crystal polymer (LCP) nematic layer and thermotropic cholesteric liquid crystal (TLC) layer. It has the advantages of displaying and hiding polarization states, wide color tuning range, convenient operation, high integration and security. For incident light with a specific polarization state, the patterned nematic phase LCP layer can carry out regionalized phase editing and polarization state modulation, while the TLC layer can selectively reflect the incident light. Therefore, a patterned structural color security label is subtly realized. The anti-counterfeiting device can realize the display, hiding, color adjustment and image/background conversion of patterns by adjusting the polarization direction of incident light. In addition, the TLC layer in the device can meet the application requirements of the anti-counterfeit device at different environmental temperatures through the flexible design of the system weight ratio. Furthermore, the device can be easily heated by body temperature, realize dynamic real-time wide-spectrum color modulation and reversible pattern erasure, and further enhance its security dimension and security. The multi-polarization-type anti-counterfeiting device has three-dimensional anti-counterfeiting efficacy. The first dimensional anti-counterfeiting efficacy is achieved by the thermochromic liquid crystal layer. The thermochromic liquid crystal layer has no reflection color outside the operating temperature range of TLC material, and the entire device displays black background. The second and the third dimensional anti-counterfeiting efficacy are related to the polarization state of the incident light and the linear polarization direction, respectively. Only when the incident light is linearly polarized light and its polarization direction makes an angle of 45° or –45° with respect to the optical axis of the liquid crystal, will the device show the designed pattern. Consequently, our proposed anti-counterfeiting device is expected to provide a new idea for developing the anti-counterfeiting field.
-
Keywords:
- polarization dependent /
- multi-dimensional /
- anti-counterfeit /
- thermochromic liquid crystalline /
- liquid crystal polymer
[1] Kim J M, Bak J M, Lim B, Jung Y J, Park B C, Park M J, Park J M, Lee H I, Jung S 2022 Nanoscale 14 5377Google Scholar
[2] Gu Y Q, He C, Zhang Y Q, Lin L, Thackray B D, Ye J 2020 Nat. Commun. 11 516Google Scholar
[3] Peng S, Sun S, Zhu Y, Qiu J, Yang H 2023 Virtual Phys. Prototyping 18 e2179929Google Scholar
[4] Huo Y, Yang Z, Wilson T, Jiang C 2022 Adv. Mater. Interfaces 9 2200201Google Scholar
[5] Xu C, Huang C, Yang D, Luo L, Huang S 2022 ACS Omega 7 7320Google Scholar
[6] Yang D, Liao G, Huang S 2019 J. Mater. Chem. C 7 11776Google Scholar
[7] Qin L, Liu X J, He K Y, Yu G D, Yuan H, Xu M, Li F Y, Yu Y L 2021 Nat. Commun. 12 699Google Scholar
[8] Wei J, Ou W, Luo J, Kuang D 2022 Angew. Chem. Int. Ed. 61 e202207985
[9] Xu J, Zhu T, Chen X, Zhao D, Li Y, Zhang L, Bi N, Gou J, Jia L 2023 J. Lumin. 256 119647Google Scholar
[10] Yao W, Lan R, Li K, Zhang L 2021 ACS Appl. Mater. Interfaces 13 1424Google Scholar
[11] Liu Y, Han F, Li F, Zhao Y, Chen M, Xu Z, Zheng X, Hu H, Yao J, Guo T, Lin W, Zheng Y, You B, Liu P, Li Y, Qian L 2019 Nat. Commun. 10 2409Google Scholar
[12] Chen Q, Huang X, Yang D, Le Y, Pan Q, Li M, Zhang H, Kang J, Xiao X, Qiu J, Yang Z, Dong G 2023 Adv. Opt. Mater. 11 2300090Google Scholar
[13] Han W, Wen X, Ding Y, Li Z, Lu M, Zhu H, Wang G, Yan J, Hong X 2022 Appl. Surf. Sci. 595 153563Google Scholar
[14] Jung C, Kim G, Jeong M, Jang J, Dong Z G, Badloe T, Yang J K W, Rho J 2021 Chem. Rev. 121 13013Google Scholar
[15] Yao B, Lin P, Sun H, Wang S, Luo C, Li Z, Du X, Ding Y, Xu Y, Wan H, Zhu W 2021 Adv. Opt. Mater. 9 2001434Google Scholar
[16] Duan X, Kamin S, Liu N 2017 Nat. Commun. 8 14606Google Scholar
[17] Jung C, Yang Y, Jang J, Badloe T, Lee T, Mun J, Moon S W, Rho J 2021 Nanophotonics 10 919
[18] Daqiqeh Rezaei S, Dong Z, Wang H, Xu J, Wang H, Tavakkoli Yaraki M, Choon Hwa Goh K, Zhang W, Ghorbani S R, Liu X, Yang J K W 2023 Mater. Today 62 51Google Scholar
[19] Wu Y, Sun R, Ren J, Zhang S, Wu S 2022 Adv. Funct. Mater. 33 2210047
[20] Hou J, Li M, Song Y 2018 Angew. Chem. Int. Ed. 57 2544Google Scholar
[21] Li T, Liu G, Kong H, Yang G, Wei G, Zhou X 2023 Coord. Chem. Rev. 475 214909Google Scholar
[22] Rezaei S D, Dong Z G, Chan J Y E, Trisno J, Ng R J H, Ruan Q F, Qiu C W, Mortensen N A, Yang J K W 2021 ACS Photonics 8 18
[23] Li J, Guan Z, Liu H, He Z, Li Z, Yu S, Zheng G 2023 Laser Photonics Rev. 17 2200342Google Scholar
[24] Huang H, Li H, Yin J, Gu K, Guo J, Wang C 2023 Adv. Mater. 35 2211117Google Scholar
[25] Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D, Tian H, Zhu W, Feringa B L 2022 Nat. Photonics 16 226
[26] Hu H L, Liu B H, Li M Q, Zheng Z G, Zhu W H 2022 Adv. Mater. 34 2110170Google Scholar
[27] Bisoyi H K, Li Q 2022 Chem. Rev. 122 4887Google Scholar
[28] Chen P, Wei B, Hu W, Lu Y 2020 Adv. Mater. 32 1903665
[29] Zhu L, Xu C T, Chen P, Zhang Y, Liu S, Chen Q, Ge S, Hu W, Lu Y 2022 Light-Sci. Appl. 11 135Google Scholar
[30] Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J 2010 Nature 468 422Google Scholar
[31] Mitov M 2012 Adv. Mater. 24 6260Google Scholar
[32] Faryad M, Lakhtakia A 2014 Adv. Opt. Photonics 6 225Google Scholar
[33] Liu B, Yuan C, Hu H, Sun P, Yu L, Zheng Z 2022 J. Mater. Chem. C 10 16924Google Scholar
[34] Kelly J A, Giese M, Shopsowitz K E, Hamad W Y, MacLachlan M J 2014 Acc. Chem. Res. 47 1088Google Scholar
[35] Bisoyi H K, Bunning T J, Li Q 2018 Adv. Mater. 30 1706512Google Scholar
[36] Wang L, Li Q 2016 Adv. Funct. Mater. 26 10Google Scholar
[37] Xu C, Chen P, Zhang Y, Fan X, Lu Y, Hu W 2021 Appl. Phys. Lett. 118 151102Google Scholar
[38] Lu L F, Chen X F, Liu W, Li H K, Li Y, Yang Y G 2023 Liq. Cryst. DOI: 10.1080/02678292.2023. 2200266
[39] Yang C, Wu B, Ruan J, Zhao P, Chen L, Chen D, Ye F 2021 Adv. Mater. 33 2006361Google Scholar
[40] Williams M W, Wimberly J A, Stwodah R M, Nguyen J, D’Angelo P A, Tang C 2023 ACS Appl. Polym. Mater. 5 3065Google Scholar
[41] Zhang Z, Chen Z, Wang Y, Zhao Y, Shang L 2022 Adv. Funct. Mater. 32 2107242Google Scholar
[42] Ma L L, Wu S B, Hu W, Liu C, Chen P, Qian H, Wang Y D, Chi L F, Lu Y Q 2019 ACS Nano 13 13709Google Scholar
[43] Liu C, Hsu C, Cheng K 2020 Opt. Laser Technol. 126 106060Google Scholar
[44] van der Werff L C, Robinson A J, Kyratzis I L 2012 ACS Comb. Sci. 14 605Google Scholar
[45] Pindak R S, Huang C C, Ho J T 1974 Phys. Rev. Lett. 32 43Google Scholar
-
图 6 自然光及不同偏振方向入射光下样品图案的温度依赖性. Δα = αi – αv 代表入射光偏振方向 αi 与箭头区域光轴方向 αv 之间的夹角. 白色箭头代表不同区域相应的光轴方向
Fig. 6. Temperature dependence of sample pattern under natural light and linearly polarized light with different polarization directions. Δα = αi – αv represents the angle between the polarization direction of the incident light αi and the optical axis direction of the arrow region αv. The white arrows represent the corresponding optical axis directions in different regions.
表 1 不同样品中COC/CN/CD混合材料与TEB300的质量分数和温度参数
Table 1. Weight content and temperature parameters of COC/CN/CD material and TEB300 in different samples.
样品 COC/CN/
CD/%TEB300/% 可见光波段
显色温度
范围/℃温宽/℃ S1 100.0 0 29.3—37.5 8.2 S2 97.0 3.0 22.5—32.5 10.0 S3 96.3 3.7 20.0—29.5 9.5 S4 95.3 4.7 17.5—28.5 10.5 S5 94.3 5.7 15.0—26.5 11.5 表 2 基于热致变色理论模型的各系数拟合值
Table 2. The fitting value of each coefficient based on thermochromic theoretical model.
λ0/nm Tc/℃ c′/(nm·℃ν) ν S1 198.575 25.742 1299.893 0.699 S2 172.004 18.026 1607.392 0.699 S3 141.651 15.014 1852.118 0.699 S4 124.274 11.431 2188.508 0.699 S5 120.653 8.554 2288.744 0.699 -
[1] Kim J M, Bak J M, Lim B, Jung Y J, Park B C, Park M J, Park J M, Lee H I, Jung S 2022 Nanoscale 14 5377Google Scholar
[2] Gu Y Q, He C, Zhang Y Q, Lin L, Thackray B D, Ye J 2020 Nat. Commun. 11 516Google Scholar
[3] Peng S, Sun S, Zhu Y, Qiu J, Yang H 2023 Virtual Phys. Prototyping 18 e2179929Google Scholar
[4] Huo Y, Yang Z, Wilson T, Jiang C 2022 Adv. Mater. Interfaces 9 2200201Google Scholar
[5] Xu C, Huang C, Yang D, Luo L, Huang S 2022 ACS Omega 7 7320Google Scholar
[6] Yang D, Liao G, Huang S 2019 J. Mater. Chem. C 7 11776Google Scholar
[7] Qin L, Liu X J, He K Y, Yu G D, Yuan H, Xu M, Li F Y, Yu Y L 2021 Nat. Commun. 12 699Google Scholar
[8] Wei J, Ou W, Luo J, Kuang D 2022 Angew. Chem. Int. Ed. 61 e202207985
[9] Xu J, Zhu T, Chen X, Zhao D, Li Y, Zhang L, Bi N, Gou J, Jia L 2023 J. Lumin. 256 119647Google Scholar
[10] Yao W, Lan R, Li K, Zhang L 2021 ACS Appl. Mater. Interfaces 13 1424Google Scholar
[11] Liu Y, Han F, Li F, Zhao Y, Chen M, Xu Z, Zheng X, Hu H, Yao J, Guo T, Lin W, Zheng Y, You B, Liu P, Li Y, Qian L 2019 Nat. Commun. 10 2409Google Scholar
[12] Chen Q, Huang X, Yang D, Le Y, Pan Q, Li M, Zhang H, Kang J, Xiao X, Qiu J, Yang Z, Dong G 2023 Adv. Opt. Mater. 11 2300090Google Scholar
[13] Han W, Wen X, Ding Y, Li Z, Lu M, Zhu H, Wang G, Yan J, Hong X 2022 Appl. Surf. Sci. 595 153563Google Scholar
[14] Jung C, Kim G, Jeong M, Jang J, Dong Z G, Badloe T, Yang J K W, Rho J 2021 Chem. Rev. 121 13013Google Scholar
[15] Yao B, Lin P, Sun H, Wang S, Luo C, Li Z, Du X, Ding Y, Xu Y, Wan H, Zhu W 2021 Adv. Opt. Mater. 9 2001434Google Scholar
[16] Duan X, Kamin S, Liu N 2017 Nat. Commun. 8 14606Google Scholar
[17] Jung C, Yang Y, Jang J, Badloe T, Lee T, Mun J, Moon S W, Rho J 2021 Nanophotonics 10 919
[18] Daqiqeh Rezaei S, Dong Z, Wang H, Xu J, Wang H, Tavakkoli Yaraki M, Choon Hwa Goh K, Zhang W, Ghorbani S R, Liu X, Yang J K W 2023 Mater. Today 62 51Google Scholar
[19] Wu Y, Sun R, Ren J, Zhang S, Wu S 2022 Adv. Funct. Mater. 33 2210047
[20] Hou J, Li M, Song Y 2018 Angew. Chem. Int. Ed. 57 2544Google Scholar
[21] Li T, Liu G, Kong H, Yang G, Wei G, Zhou X 2023 Coord. Chem. Rev. 475 214909Google Scholar
[22] Rezaei S D, Dong Z G, Chan J Y E, Trisno J, Ng R J H, Ruan Q F, Qiu C W, Mortensen N A, Yang J K W 2021 ACS Photonics 8 18
[23] Li J, Guan Z, Liu H, He Z, Li Z, Yu S, Zheng G 2023 Laser Photonics Rev. 17 2200342Google Scholar
[24] Huang H, Li H, Yin J, Gu K, Guo J, Wang C 2023 Adv. Mater. 35 2211117Google Scholar
[25] Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D, Tian H, Zhu W, Feringa B L 2022 Nat. Photonics 16 226
[26] Hu H L, Liu B H, Li M Q, Zheng Z G, Zhu W H 2022 Adv. Mater. 34 2110170Google Scholar
[27] Bisoyi H K, Li Q 2022 Chem. Rev. 122 4887Google Scholar
[28] Chen P, Wei B, Hu W, Lu Y 2020 Adv. Mater. 32 1903665
[29] Zhu L, Xu C T, Chen P, Zhang Y, Liu S, Chen Q, Ge S, Hu W, Lu Y 2022 Light-Sci. Appl. 11 135Google Scholar
[30] Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J 2010 Nature 468 422Google Scholar
[31] Mitov M 2012 Adv. Mater. 24 6260Google Scholar
[32] Faryad M, Lakhtakia A 2014 Adv. Opt. Photonics 6 225Google Scholar
[33] Liu B, Yuan C, Hu H, Sun P, Yu L, Zheng Z 2022 J. Mater. Chem. C 10 16924Google Scholar
[34] Kelly J A, Giese M, Shopsowitz K E, Hamad W Y, MacLachlan M J 2014 Acc. Chem. Res. 47 1088Google Scholar
[35] Bisoyi H K, Bunning T J, Li Q 2018 Adv. Mater. 30 1706512Google Scholar
[36] Wang L, Li Q 2016 Adv. Funct. Mater. 26 10Google Scholar
[37] Xu C, Chen P, Zhang Y, Fan X, Lu Y, Hu W 2021 Appl. Phys. Lett. 118 151102Google Scholar
[38] Lu L F, Chen X F, Liu W, Li H K, Li Y, Yang Y G 2023 Liq. Cryst. DOI: 10.1080/02678292.2023. 2200266
[39] Yang C, Wu B, Ruan J, Zhao P, Chen L, Chen D, Ye F 2021 Adv. Mater. 33 2006361Google Scholar
[40] Williams M W, Wimberly J A, Stwodah R M, Nguyen J, D’Angelo P A, Tang C 2023 ACS Appl. Polym. Mater. 5 3065Google Scholar
[41] Zhang Z, Chen Z, Wang Y, Zhao Y, Shang L 2022 Adv. Funct. Mater. 32 2107242Google Scholar
[42] Ma L L, Wu S B, Hu W, Liu C, Chen P, Qian H, Wang Y D, Chi L F, Lu Y Q 2019 ACS Nano 13 13709Google Scholar
[43] Liu C, Hsu C, Cheng K 2020 Opt. Laser Technol. 126 106060Google Scholar
[44] van der Werff L C, Robinson A J, Kyratzis I L 2012 ACS Comb. Sci. 14 605Google Scholar
[45] Pindak R S, Huang C C, Ho J T 1974 Phys. Rev. Lett. 32 43Google Scholar
计量
- 文章访问数: 3382
- PDF下载量: 115
- 被引次数: 0