Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tomographic incoherent holography for microscale X-ray source

Chen Ji-Hui Wang Feng Li Yu-Long Zhang Xing Yao Ke Guan Zan-Yang Liu Xiang-Ming

Citation:

Tomographic incoherent holography for microscale X-ray source

Chen Ji-Hui, Wang Feng, Li Yu-Long, Zhang Xing, Yao Ke, Guan Zan-Yang, Liu Xiang-Ming
PDF
HTML
Get Citation
  • At present, in the experiment on inertial confinement fusion (ICF), no single imaging diagnosis of the black cavity plasma or the implosion target region can distinguish the emission intensity information in the depth direction, that is, the images acquired by the detector are intensity integral along the detection direction. In this paper, a tomographic imaging method using incoherent holography for microscale X-ray source is introduced. The incoherent holographic imaging technology has an imaging mechanism that encodes and compresses the three-dimensional space information of the light source into a two-dimensional hologram. In the theoretical part, we examine the imaging mechanism of incoherent holographic tomography. Then the compress sensing model which is appropriate for this incoherent tomography is investigated. Combined with the hologram reconstruction algorithm based on compress sensing, the two-dimensional distributions of light intensity at different object distances along the detection direction can be recovered from the two-dimensional hologram. In order to verify the feasibility of this imaging scheme, we simulate the incoherent holographic imaging process of a light source with an axial length of 16 mm, and obtain the tomography light intensity distribution result with a spacing of 4 mm by reconstructing the corresponding incoherent hologram through using the backpropagation algorithms, Wiener filtering algorithm, and compress sensing algorithm. All reconstruction methods mentioned above can recover the corresponding letter light source at a certain object distance, indicating the potential of incoherent holographic technology for three-dimensional imaging. For the backpropagation reconstruction image, there is a large amount of series noise at the edge of the light source signal, which affects signal recognition in practical applications. Although the Wiener filtering algorithm can recognize the image signal to some extent, the low contrast of the reconstructed image results in the distribution of target source strength mixed with background noise. Compared with the algorithm based on the Wiener filtering and backpropagation, compress sensing theory provides a more professional technique for the ill-condition problem. Results from compress sensing reconstruction show that the crosstalk noise is significantly reduced, and the intensity distribution on the objective plane of the light source is basically concentrated in the signal area. The peak-signal-to-noise ratio of reconstructed image is continuously optimized as the number of iterations increases. Besides, the axial and horizontal resolution caused by the innermost ring radius of Fresnel zone plate are also analyzed, indicating that a shorter innermost ring radius can improve the horizontal resolution, bur reduce the axial resolution.
      Corresponding author: Wang Feng, lfrc_wangfeng@163.com ; Yao Ke, keyao@fudan.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 12127810).
    [1]

    Abu-Shawareb H, Acree R, Adams P, et al. (Indirect Drive ICF Collaboration) 2022 Phys. Rev. Lett. 129 075001Google Scholar

    [2]

    温树槐, 丁永坤 2012 激光惯性约束聚变诊断学 (北京: 国防工业出版社) 第270页

    Wen S H, Ding Y K 2012 Laser Inertial Confinement Fusion Diagnostics (Beijing: Arms Industry Press) p270

    [3]

    Wang F, Jiang S E, Ding Y K, et al. 2020 Matter Radiat. Extremes 5 035201Google Scholar

    [4]

    Bachmann B, Hilsabeck T, Field J, et al. 2016 Rev. Sci. Instrum. 87 11e201Google Scholar

    [5]

    Matsuyama S, Mimura H, Yumoto H, Hara H, Yamamura K, Sano Y, Endo K, Mori Y, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K 2006 Rev. Sci. Instrum. 77 093107Google Scholar

    [6]

    Pickworth L A, Ayers J, Bell P, et al. 2016 Rev. Sci. Instrum. 87 11e316Google Scholar

    [7]

    Yamada J, Matsuyama S, Sano Y, Kohmura Y, Yabashi M, Ishikawa T, Yamauchi K 2019 Opt. Express 27 3429Google Scholar

    [8]

    Schollmeier M S, Geissel M, Shores J E, Smith I C, Porter J L 2015 Appl. Opt. 54 5147Google Scholar

    [9]

    Gabor D 1948 Nature 161 777Google Scholar

    [10]

    Mertz L, Young N O 1961 Proceeding of the International Conference on Optical Instruments and Techniques Chapman Hall, London pp305–310

    [11]

    Barrett H H 1972 J. Nucl. Med. 13 382

    [12]

    Rogers W L, Jones L W, Beierwaltes W H 1973 Opt. Eng. 12 13Google Scholar

    [13]

    Ceglio N M, Coleman L W 1977 Phys. Rev. Lett. 39 20Google Scholar

    [14]

    Ceglio N M, Larsen J T 1980 Phys. Rev. Lett. 44 579Google Scholar

    [15]

    Caroli E, Stephen J B, Dicocco G, Natalucci L, Spizzichino A 1987 Space Sci. Rev. 45 349Google Scholar

    [16]

    Nakamura T, Watanabe T, Igarashi S, Chen X, Tajima K, Yamaguchi K, Shimano T, Yamaguchi M 2020 Opt. Express 28 39137Google Scholar

    [17]

    Shimano T, Nakamura Y, Tajima K, Sao M, Hoshizawa T 2018 Appl. Opt. 57 2841Google Scholar

    [18]

    Wu J C, Zhang H, Zhang W H, Jin G F, Cao L C, Barbastathis G 2020 Light: Sci. Appl. 9 53Google Scholar

    [19]

    Soltau J, Meyer P, Hartmann R, Strüder L, Soltau H, Salditt T 2023 Optica 10 127Google Scholar

    [20]

    郑志坚, 曹磊峰, 张保汉, 丁永坤, 江少恩, 李朝光 2003 强激光与粒子束 15 1001

    Zheng Z J, Cao L F, Zhang B H, Ding Y K, Jiang S E, Li C G 2003 High Power Laser and Particle Beams 15 1001

    [21]

    曹磊峰 2002 博士学位论文 (绵阳: 中国工程物理研究院)

    Cao L F 2002 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics

    [22]

    Brady D J, Pitsianis N, Sun X, Potuluri P 2008 US Patent US7427932 B2 [2007-07-31

    [23]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14Google Scholar

    [24]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992Google Scholar

  • 图 1  非相干全息成像示意图

    Figure 1.  Procedure of incoherent holography.

    图 2  针对微尺寸X射线源的成像示意图与二维全息图

    Figure 2.  Imaging system for microscale X-ray source and the corresponding 2D hologram.

    图 3  模拟成像系统二维侧视图

    Figure 3.  2D lateral view of the simulative imaging system.

    图 4  (a)非相干全息层析重建模型; (b)基于背传输算法的重建结果; (c)基于维纳滤波算法的重建结果; (d)基于压缩感知算法的重建结果(100次迭代); (e)基于压缩感知算法的重建结果(500次迭代); (f)基于压缩感知算法的重建结果(2000次迭代)

    Figure 4.  (a) Tomographic reconstruction model of incoherent holography; (b) reconstruction result with backpropagate algorithms; (c) reconstruction result with Wiener filtering algorithms; (d) reconstruction result with compress sensing algorithms (100 iterations); (e) reconstruction result with compress sensing algorithms (500 iterations); (f) reconstruction result with compress sensing algorithms (2000 iterations).

    图 5  PSNR与重建迭代次数间的关系

    Figure 5.  Relationship between PSNR and reconstruction iterations.

    图 6  使用不同最内环半径波带片进行模拟成像的分辨水平对比. 在距离波带片54, 58和62 mm平面上的二维重建结果, 以及在58 mm平面内虚线标识区域的一维光强分布情况 (a) 0.08 mm; (b) 0.06 mm

    Figure 6.  Comparisons of resolution level in simulative imaging when applied FZP with different innermost radius. The 2D reconstruction result at the following objective depth: 54, 58 and 62 mm, and the 1D intensity distribution of the dotted line area in 58 mm plane: (a) 0.08 mm; (b) 0.06 mm.

  • [1]

    Abu-Shawareb H, Acree R, Adams P, et al. (Indirect Drive ICF Collaboration) 2022 Phys. Rev. Lett. 129 075001Google Scholar

    [2]

    温树槐, 丁永坤 2012 激光惯性约束聚变诊断学 (北京: 国防工业出版社) 第270页

    Wen S H, Ding Y K 2012 Laser Inertial Confinement Fusion Diagnostics (Beijing: Arms Industry Press) p270

    [3]

    Wang F, Jiang S E, Ding Y K, et al. 2020 Matter Radiat. Extremes 5 035201Google Scholar

    [4]

    Bachmann B, Hilsabeck T, Field J, et al. 2016 Rev. Sci. Instrum. 87 11e201Google Scholar

    [5]

    Matsuyama S, Mimura H, Yumoto H, Hara H, Yamamura K, Sano Y, Endo K, Mori Y, Yabashi M, Nishino Y, Tamasaku K, Ishikawa T, Yamauchi K 2006 Rev. Sci. Instrum. 77 093107Google Scholar

    [6]

    Pickworth L A, Ayers J, Bell P, et al. 2016 Rev. Sci. Instrum. 87 11e316Google Scholar

    [7]

    Yamada J, Matsuyama S, Sano Y, Kohmura Y, Yabashi M, Ishikawa T, Yamauchi K 2019 Opt. Express 27 3429Google Scholar

    [8]

    Schollmeier M S, Geissel M, Shores J E, Smith I C, Porter J L 2015 Appl. Opt. 54 5147Google Scholar

    [9]

    Gabor D 1948 Nature 161 777Google Scholar

    [10]

    Mertz L, Young N O 1961 Proceeding of the International Conference on Optical Instruments and Techniques Chapman Hall, London pp305–310

    [11]

    Barrett H H 1972 J. Nucl. Med. 13 382

    [12]

    Rogers W L, Jones L W, Beierwaltes W H 1973 Opt. Eng. 12 13Google Scholar

    [13]

    Ceglio N M, Coleman L W 1977 Phys. Rev. Lett. 39 20Google Scholar

    [14]

    Ceglio N M, Larsen J T 1980 Phys. Rev. Lett. 44 579Google Scholar

    [15]

    Caroli E, Stephen J B, Dicocco G, Natalucci L, Spizzichino A 1987 Space Sci. Rev. 45 349Google Scholar

    [16]

    Nakamura T, Watanabe T, Igarashi S, Chen X, Tajima K, Yamaguchi K, Shimano T, Yamaguchi M 2020 Opt. Express 28 39137Google Scholar

    [17]

    Shimano T, Nakamura Y, Tajima K, Sao M, Hoshizawa T 2018 Appl. Opt. 57 2841Google Scholar

    [18]

    Wu J C, Zhang H, Zhang W H, Jin G F, Cao L C, Barbastathis G 2020 Light: Sci. Appl. 9 53Google Scholar

    [19]

    Soltau J, Meyer P, Hartmann R, Strüder L, Soltau H, Salditt T 2023 Optica 10 127Google Scholar

    [20]

    郑志坚, 曹磊峰, 张保汉, 丁永坤, 江少恩, 李朝光 2003 强激光与粒子束 15 1001

    Zheng Z J, Cao L F, Zhang B H, Ding Y K, Jiang S E, Li C G 2003 High Power Laser and Particle Beams 15 1001

    [21]

    曹磊峰 2002 博士学位论文 (绵阳: 中国工程物理研究院)

    Cao L F 2002 Ph. D. Dissertation (Mianyang: China Academy of Engineering Physics

    [22]

    Brady D J, Pitsianis N, Sun X, Potuluri P 2008 US Patent US7427932 B2 [2007-07-31

    [23]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14Google Scholar

    [24]

    Bioucas-Dias J M, Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992Google Scholar

  • [1] Wang Pan, Wang Zhong-Gen, Sun Yu-Fa, Nie Wen-Yan. Novel compressive sensing computing model used for analyzing electromagnetic scattering characteristics of three-dimensional electrically large objects. Acta Physica Sinica, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] Zhao Zi-Bo, Zhuang Ge, Xie Jin-Lin, Qu Cheng-Ming, Qiang Zi-Wei. Implementation of spectral clustering algorithm for automatic identification of plasma coherence patterns. Acta Physica Sinica, 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [3] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [4] Shi Jie, Yang De-Sen, Shi Sheng-Guo, Hu Bo, Zhu Zhong-Rui. Compressive focused beamforming based on vector sensor array. Acta Physica Sinica, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [5] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [6] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [7] Kang Rong-Zong, Tian Peng-Wu, Yu Hong-Yi. An adaptive compressed sensing method based on selective measure. Acta Physica Sinica, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [8] Chen Ming-Sheng, Wang Shi-Wen, Ma Tao, Wu Xian-Liang. Fast analysis of electromagnetic scattering characteristics in spatial and frequency domains based on compressive sensing. Acta Physica Sinica, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [9] Zhang Xin-Peng, Hu Niao-Qing, Cheng Zhe, Zhong Hua. Vibration data recovery based on compressed sensing. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [10] Wang Zhe, Wang Bing-Zhong. Application of compressed sensing theory in the method of moments. Acta Physica Sinica, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [11] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [12] Wang Chen, An Hong-Hai, Wang Wei, Fang Zhi-Heng, Jia Guo, Meng Xiang-Fu, Sun Jin-Ren, Liu Zheng-Kun, Fu Shao-Jun, Qiao Xiu-Mei, Zheng Wu-Di, Wang Shi-Ji. Diagnoses of Au plasma with soft X-ray double frequency grating interference technique. Acta Physica Sinica, 2014, 63(12): 125210. doi: 10.7498/aps.63.125210
    [13] Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Wang Wei, Meng Xiang-Fu, Xie Zhi-Yong, Wang Shi-Ji. Diagnosis of high-Z plasma with soft X-ray laser probe. Acta Physica Sinica, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [14] Ning Fang-Li, He Bi-Jing, Wei Juan. An algorithm for image reconstruction based on lp norm. Acta Physica Sinica, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [15] Feng Bing-Chen, Fang Sheng, Zhang Li-Guo, Li Hong, Tong Jie-Juan, Li Wen-Qian. A non-linear analysis for gamma-ray spectrum based on compressed sensing. Acta Physica Sinica, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [16] Bai Xu, Li Yong-Qiang, Zhao Sheng-Mei. Differential compressive correlated imaging. Acta Physica Sinica, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [17] Ran Lin-Song, Wang Hong-Bin, Li Xiang-Dong, Zhang Ji-Yan, Cheng Xin-Lu. Spectral line shift of He-like titanium in hot and dense plasmas. Acta Physica Sinica, 2009, 58(9): 6096-6100. doi: 10.7498/aps.58.6096
    [18] Wang Chen, Fang Zhi-Heng, Sun Jin-Ren, Wang Wei, Xiong Jun, Ye Jun-Jian, Fu Si-Zu, Gu Yuan, Wang Shi-Ji, Zhen Wu-Di, Ye Wen-Hua, Qiao Xiu-Mei, Zhang Guo-Ping. Experimental diagnosis of plasma jets by using an X-ray laser. Acta Physica Sinica, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [19] Wan Xiong, Yu Sheng-Lin, Wang Chang-Kun, Le Shu-Ping, Li Bing-Ying, He Xing-Dao. Emission spectral tomography algorithm based on multi-objective optimization and its application in plasma diagnosis. Acta Physica Sinica, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [20] YU JIAN-HUA, HUANG JIAN-JUN. PLASMA DIAGNOSIS OF RF DISCHARGE BY USING IMPEDANCE MEASUREMENT. Acta Physica Sinica, 2001, 50(12): 2403-2407. doi: 10.7498/aps.50.2403
Metrics
  • Abstract views:  2840
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  01 June 2023
  • Accepted Date:  17 July 2023
  • Available Online:  18 July 2023
  • Published Online:  05 October 2023

/

返回文章
返回