Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exciton regulation mechanism of Alq3/HAT-CN tandem electroluminescent devices

Li Wan-Jiao Guan Yun-Xia Bao Xi Wang Cheng Song Jia-Yi Xu Shuang Peng Ke-Ao Chen Li-Jia Niu Lian-Bin

Citation:

Exciton regulation mechanism of Alq3/HAT-CN tandem electroluminescent devices

Li Wan-Jiao, Guan Yun-Xia, Bao Xi, Wang Cheng, Song Jia-Yi, Xu Shuang, Peng Ke-Ao, Chen Li-Jia, Niu Lian-Bin
PDF
HTML
Get Citation
  • Tandem organic electroluminescent devices (OLEDs) have attracted widespread attention due to their long lifetime and high current efficiency. In this study, a double-emitting unit tandem OLED is fabricated by using Alq3/HAT-CN as an interconnect layer. Its photovoltaic properties and exciton regulation mechanism are investigated. The results show that the luminance (11189.86 cd/m2) and efficiency (13.85 cd/A) of the tandem OLED reaches 2.7 times that of the single electroluminescent (EL) unit OLED (luminance and efficiency of 4007.14 cd/m2 and 5.00 cd/A, respectively) at a current density of 80 mA/cm2. This proves that the Alq3/HAT-CN is an efficient interconnect layer. At room temperature, the polaron pair undergoes intersystem crossing (ISC) due to hyperfine interaction (HFI) when a magnetic field is applied to the device. This increases the concentration of the triplet excitons (T1), thus promoting the charge scattering. The result is a rapid increase in the low magnetic field and a slow increase in the high magnetic field of the MEL. When the injection current strength is constant, there is less uncompounded charge in the Alq3/HAT-CN device than in other connected layer devices. Triplet-charge annihilation (TQA) is weak, resulting in a relative increase in the value of T1, which is not involved in the TQA. This suppresses the ISC and leads to a minimal increase in the MEL. As the current strength increases, the T1 value increases, causing TQA to increase and ISC to decrease. Since the TQA is related to charge and T1 value, lowering the temperature reduces the carrier mobility in the device, resulting in the relative decreasing of charge concentration and the weakening of TQA. Lowering the temperature reduces the quenching of thermal phonons and increases the T1 value while extending its lifetime, resulting in the enhancement of triplet-triplet annihilation (TTA). At low temperatures, the high magnetic field shape of the MEL changes from slowly increasing to rapidly decreasing. Therefore, the T1 value can be regulated by varying the current strength and temperature, which further affects the strength of ISC, TQA and TTA, and the luminescence and efficiency of the device can be effectively improved by reducing TQA and ISC. This work is of great significance in understanding the luminescence mechanism of small molecule tandem devices and studying the mechanism for improving their photovoltaic properties.
      Corresponding author: Guan Yun-Xia, utk_lili@126.com ; Niu Lian-Bin, niulb03@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61874016), the Natural Science Foundation of Chongqing, China (Grant Nos. CSTC2020jcyj-msxmX0282, CSTC2021jcyj-msxmX0576), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJQN202200518).
    [1]

    Liu Y C, Li C S, Ren Z J, Yan S Y, Bryce M R 2018 Nat. Rev. Mater. 3 1Google Scholar

    [2]

    Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331Google Scholar

    [3]

    Chen L X, Jia W Y, Lan Z J, Tang X T, Zhu F R, Xiong Z H 2018 Org. Electron. 55 165Google Scholar

    [4]

    Reineke S, Thomschke M, Lüssem B, Leo K 2013 Rev. Mod. Phys. 85 1245Google Scholar

    [5]

    Lee S, Lee J H, Lee J H, Kim J J 2012 Adv. Funct. Mater. 22 855Google Scholar

    [6]

    Chiba T, Pu Y J, Miyazaki R, Nakayama K I, Sasabe H, Kido J 2011 Org. Electron. 12 710Google Scholar

    [7]

    Yuan J K, Liu W, Yao J W, Sun Q, Dai Y F, Chen J S, Yang D Z, Qiao X F, Ma D G 2020 Org. Electron. 83 105745Google Scholar

    [8]

    Matsumoto T, Nakada T, Endo J, Koichi M, Kawamura N, Yokoi A, Kido J 2003 SID Symp. Dig. Tech. Pap. 34 979Google Scholar

    [9]

    Sun H D, Guo Q X, Yang D Z, Chen Y H, Chen J S, Ma D G 2015 ACS Photonics 2 271Google Scholar

    [10]

    Liu Y, Wu X M, Xiao Z H, Gao J, Zhang Y, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302Google Scholar

    [11]

    Guo Q X, Dai Y F, Sun Q, Qiao X F, Chen J S, Zhu T Z, Ma D G 2018 Adv. Electron. Mater. 4 1800177Google Scholar

    [12]

    Wang J, Wang Y, Qin Y, Li R Q, An J X, Chen Y H, Lai W Y, Zhang X W, Huang W 2021 J. Mater. Chem. C 9 8570Google Scholar

    [13]

    Xu Y C, Niu Y X, Gong C L, Shi W, Yang X Y, Wei B, Wong W Y 2022 Adv. Opt. Mater. 10 2200984Google Scholar

    [14]

    Wei H X, Zhang R, Huang G Y, Lv C K, Tang J X 2022 J. Mater. Chem. C 10 5994Google Scholar

    [15]

    Kalinowski J, Cocchi M, Virgili D, Marco P D, Fattori V 2003 Chem. Phys. Lett. 380 710Google Scholar

    [16]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H, Tu L Y, Xiong Z H 2020 Adv. Funct. Mater. 30 2005765Google Scholar

    [17]

    Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Inter. 10 1948Google Scholar

    [18]

    Xiang J, Chen Y B, Yuan D, Jia W Y, Zhang Q M, Xiong Z H 2016 Appl. Phys. Lett. 109 103301Google Scholar

    [19]

    Thompson N, Hontz E, Congreve D N, Bahlke M E, Reineke S, Voorhis T V, Baldo M A 2014 Adv. Mater. 26 1366Google Scholar

    [20]

    Wang Y, Ning Y R, Wu F J, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2202882Google Scholar

    [21]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [22]

    Van Reenen S, Kersten S P, Wouters S H W, et al. 2013 Phys. Rev. B 88 125203Google Scholar

    [23]

    Chang Q, Lü Z Y, Yin Y H, Xiao J, Wang J L 2022 Displays 75 102306Google Scholar

    [24]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

    [25]

    Keawin T, Prachumrak N, Namuangruk S, et al. 2015 RSC Adv. 5 73481Google Scholar

    [26]

    王春梅, 雷衍连, 张巧明, 焦威, 游胤涛, 熊祖洪 2013 中国科学: 物理学 力学 天文学 43 732Google Scholar

    Wang C M, Lei Y L, Zhang Q M, Jiao W, You Y T, Xiong Z H 2013 Sci. Sin-Phys. Mech. Astron. 43 732Google Scholar

    [27]

    Can M, Havare A K, Aydın H, Yagmurcukardes N, Demic S, Icli S, Okur S 2014 Appl. Surf. Sci. 314 1082Google Scholar

    [28]

    Talik N A, Yeoh K H, Ng C Y B, Tan C Y, Yap B K 2016 J. Lumin. 169 61Google Scholar

    [29]

    Yuan P S, Guo X M, Qiao X F, Yan D H, Ma D G 2019 Adv. Opt. Mater. 7 1801648Google Scholar

    [30]

    Engmann S, Bittle E G, Richter L J, Hallani R K, Anthony J E, Gundlach D J 2021 J. Mater. Chem. C 9 10052Google Scholar

    [31]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [32]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [33]

    邓金秋, 汤仙童, 潘睿亨, 胡叶倩, 朱洪强, 熊祖洪, 陈晓莉 2018 科学通报 63 2974Google Scholar

    Deng J Q, Tang X T, Pan R H, Hu Y Q, Zhu H Q, Xiong Z H, Chen X L 2018 Chin. Sci. Bull. 63 2974Google Scholar

    [34]

    Jou J H, Lin W J, Shih S H, Wang Y S, Sahoo S, Singh M, Tsai Y C, Wen S W 2023 Electronics 12 2099Google Scholar

    [35]

    Chen P, Peng Q M, Yao L, Gao Na, Li F 2013 Appl. Phys. Lett. 102 063301

    [36]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [37]

    Liu H, Jia W Y, Zhang Y, Zhang Q M, Lei Y L, Lu C L, Ling Y Z, Xiong Z H 2014 Synth. Met. 198 6Google Scholar

    [38]

    Desai P, Shakya P, Kreouzis T, Gilin W P, Morley N A, Gibbs M R J 2007 Phys. Rev. B 75 094423Google Scholar

    [39]

    Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar

    [40]

    Baniya S, Pang Z Y, Sun D L, Zhai Y X, Kwon O, Choi H, Choi B, Lee S, Vardeny Z V 2016 Adv. Funct. Mater. 26 6930Google Scholar

    [41]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [42]

    Kim C Y, Lee C, Kim H J, Hwang J, Godumala M, Jeong J E, Woo H Y, Cho M J, Park S, Choi D H 2020 J. Mater. Chem. C 8 6780Google Scholar

    [43]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [44]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [45]

    Shao M, Yan L, Li M X, Ilia L, Hu B 2013 J. Mater. Chem. C 1 1330Google Scholar

  • 图 1  器件A和器件B的结构及其电流密度-亮度-发光效率特性 (a) 器件结构图以及Alq3, HAT-CN的分子结构; (b) 电压-亮度曲线, 插图为电压-电流密度曲线; (c) 电流密度-亮度曲线以及在亮度为1000 cd/m2和15000 cd/m2的色坐标插图; (d) 电流密度-发光效率曲线

    Figure 1.  Structural diagram of device A and device B and their current density-luminance-luminance efficiency curves: (a) Structural diagrams and molecular structures of Alq3 and HAT-CN; (b) voltage-luminance curves, insets shows the voltage-current density curves; (c) current density-luminance curves and color coordinate insets at luminance of 1000 cd/m2 and 15000 cd/m2; (d) current density-luminance efficiency curves.

    图 2  不同连接层(无连接层, Alq3, HAT-CN, Alq3/HAT-CN, Al/Alq3/HAT-CN, Alq3/HAT-CN/TAPC)的器件C—H能级结构图, 其单位为电子伏特(eV)

    Figure 2.  Energy level structure of device C—H with differ interconnect layer (without interconnect layer, Alq3, HAT-CN, Alq3/HAT-CN, Al/Alq3/HAT-CN, Alq3/HAT-CN/TAPC), unit is electron volts (eV).

    图 3  不同连接层的叠层OLED器件C—H (无连接层, HAT-CN, Alq3/HAT-CN, Al/Alq3/HAT-CN和Alq3 /HAT-CN/TAPC)的光电性能 (a) 电压-电流密度曲线; (b) 电压-亮度曲线; (c) 电流密度-亮度曲线; (d) 电流密度-发光效率曲线; (e) 归一化EL光谱图; (f) 器件C—H电压-电流密度双对数曲线图(黑色为拟合曲线)

    Figure 3.  Optoelectronic properties of tandem OLED devices C—H (without interconnect layer, HAT-CN, Alq3/HAT-CN, Al/Alq3/HAT-CN and Alq3/HAT-CN/TAPC) with different interconnect layers: (a) Voltage-current density curves; (b) voltage-luminance curves; (c) current density-luminance curves; (d) current density-luminance efficiency curves; (e) normalized EL spectra; (f) the double logarithmic curves of voltage-current density of device C—H (black for fitting curve).

    图 4  单发光单元器件A和叠层OLED器件B在不同电流下的MEL, MC曲线 (a) 器件A的MEL; (b) 器件B的MEL; (c) MEL的低场和高场效应; (d) 器件A的MC; (e) 器件B的MC; (f) MC的低场和高场效应

    Figure 4.  The MEL, MC curves of single EL unit device A and tandem OLED device B at different current: (a) MEL curves of device A; (b) MEL curves of device B; (c) MELLFE and MELHFE; (d) MC curves of device A; (e) MC curves of device B; (f) MCLFE and MCHFE.

    图 5  室温下不同连接层叠层OLED器件D, F—H(Alq3, Alq3/HAT-CN, Al/Alq3/HAT-CN和Alq3/HAT-CN/TAPC)的MEL和MC曲线, 以及MEL的低场效应和高场效应随电流的变化 (a) MEL曲线; (b) MC曲线; (c) 随电流变化的MEL低场效应; (d) 随电流变化的MEL高场效应

    Figure 5.  The MEL and MC curves of different interconnect layer tandem OLED devices D, F–H (Alq3, Alq3/HAT-CN, Al/Alq3/HAT-CN and Alq3/HAT-CN/TAPC) at room temperature, and the variation of MELLFE and MELHFE with current: (a) MEL curves; (b) MC curves; (c) MELLFE of the current variation; (d) MELHFE of the current variation.

    图 6  在一定电流下随温度变化的Alq3/HATCN连接层叠层OLED的MEL和MC曲线 (a) 100 μA的MEL; (b) 800 μA的MEL; (c) 100 μA的MC; (d) 800 μA的MC

    Figure 6.  The MEL and MC curves of Alq3/HATCN interconnect layer tandem OLED that vary with temperature under a certain current: (a) MEL curves of 100 μA; (b) MEL curves of 800 μA; (c) MC curves of 100 μA; (d) MC curves of 800 μA.

    图 7  (a) 单发光单元OLED能级图, 其单位为电子伏特(eV); (b) Alq3发光材料器件的机制形成过程图

    Figure 7.  (a) Energy level structure of single EL unit OLED, unit is electron volts (eV); (b) mechanisms formation process involved in Alq3 luminescent material devices.

    表 1  单发光单元器件A和连接层为Alq3/HAT-CN叠层器件B, 以及不同连接层的叠层器件C—H的光电性能

    Table 1.  Photovoltaic performance of single EL unit device A, tandem device B with Alq3/HAT-CN as the interconnect layers, and tandem devices C—H with different interconnect layers.

    DeviceVoltageon/VVoltage/VLuminance/(cd·m–2)Luminance efficiency/(cd·A–1)
    J80MaxJ80MaxJ80
    A4.097.96366404007.145.535.00
    B7.6517.452171010410.0013.2812.92
    C4.0511.73152003353.275.294.19
    D9.3818.39120805494.579.006.84
    E5.4317.9491813072.574.233.84
    F7.8915.322642011189.8615.3513.85
    G8.2518.20145306039.058.797.54
    H6.7612.54136306340.978.227.91
    注: J表示电流密度, J80­数据列代表电流密度为80 mA·cm–2时, 相应参量的取值; Max数据列表示相应参量的最大值.
    DownLoad: CSV
  • [1]

    Liu Y C, Li C S, Ren Z J, Yan S Y, Bryce M R 2018 Nat. Rev. Mater. 3 1Google Scholar

    [2]

    Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331Google Scholar

    [3]

    Chen L X, Jia W Y, Lan Z J, Tang X T, Zhu F R, Xiong Z H 2018 Org. Electron. 55 165Google Scholar

    [4]

    Reineke S, Thomschke M, Lüssem B, Leo K 2013 Rev. Mod. Phys. 85 1245Google Scholar

    [5]

    Lee S, Lee J H, Lee J H, Kim J J 2012 Adv. Funct. Mater. 22 855Google Scholar

    [6]

    Chiba T, Pu Y J, Miyazaki R, Nakayama K I, Sasabe H, Kido J 2011 Org. Electron. 12 710Google Scholar

    [7]

    Yuan J K, Liu W, Yao J W, Sun Q, Dai Y F, Chen J S, Yang D Z, Qiao X F, Ma D G 2020 Org. Electron. 83 105745Google Scholar

    [8]

    Matsumoto T, Nakada T, Endo J, Koichi M, Kawamura N, Yokoi A, Kido J 2003 SID Symp. Dig. Tech. Pap. 34 979Google Scholar

    [9]

    Sun H D, Guo Q X, Yang D Z, Chen Y H, Chen J S, Ma D G 2015 ACS Photonics 2 271Google Scholar

    [10]

    Liu Y, Wu X M, Xiao Z H, Gao J, Zhang Y, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302Google Scholar

    [11]

    Guo Q X, Dai Y F, Sun Q, Qiao X F, Chen J S, Zhu T Z, Ma D G 2018 Adv. Electron. Mater. 4 1800177Google Scholar

    [12]

    Wang J, Wang Y, Qin Y, Li R Q, An J X, Chen Y H, Lai W Y, Zhang X W, Huang W 2021 J. Mater. Chem. C 9 8570Google Scholar

    [13]

    Xu Y C, Niu Y X, Gong C L, Shi W, Yang X Y, Wei B, Wong W Y 2022 Adv. Opt. Mater. 10 2200984Google Scholar

    [14]

    Wei H X, Zhang R, Huang G Y, Lv C K, Tang J X 2022 J. Mater. Chem. C 10 5994Google Scholar

    [15]

    Kalinowski J, Cocchi M, Virgili D, Marco P D, Fattori V 2003 Chem. Phys. Lett. 380 710Google Scholar

    [16]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H, Tu L Y, Xiong Z H 2020 Adv. Funct. Mater. 30 2005765Google Scholar

    [17]

    Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Inter. 10 1948Google Scholar

    [18]

    Xiang J, Chen Y B, Yuan D, Jia W Y, Zhang Q M, Xiong Z H 2016 Appl. Phys. Lett. 109 103301Google Scholar

    [19]

    Thompson N, Hontz E, Congreve D N, Bahlke M E, Reineke S, Voorhis T V, Baldo M A 2014 Adv. Mater. 26 1366Google Scholar

    [20]

    Wang Y, Ning Y R, Wu F J, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2202882Google Scholar

    [21]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [22]

    Van Reenen S, Kersten S P, Wouters S H W, et al. 2013 Phys. Rev. B 88 125203Google Scholar

    [23]

    Chang Q, Lü Z Y, Yin Y H, Xiao J, Wang J L 2022 Displays 75 102306Google Scholar

    [24]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

    [25]

    Keawin T, Prachumrak N, Namuangruk S, et al. 2015 RSC Adv. 5 73481Google Scholar

    [26]

    王春梅, 雷衍连, 张巧明, 焦威, 游胤涛, 熊祖洪 2013 中国科学: 物理学 力学 天文学 43 732Google Scholar

    Wang C M, Lei Y L, Zhang Q M, Jiao W, You Y T, Xiong Z H 2013 Sci. Sin-Phys. Mech. Astron. 43 732Google Scholar

    [27]

    Can M, Havare A K, Aydın H, Yagmurcukardes N, Demic S, Icli S, Okur S 2014 Appl. Surf. Sci. 314 1082Google Scholar

    [28]

    Talik N A, Yeoh K H, Ng C Y B, Tan C Y, Yap B K 2016 J. Lumin. 169 61Google Scholar

    [29]

    Yuan P S, Guo X M, Qiao X F, Yan D H, Ma D G 2019 Adv. Opt. Mater. 7 1801648Google Scholar

    [30]

    Engmann S, Bittle E G, Richter L J, Hallani R K, Anthony J E, Gundlach D J 2021 J. Mater. Chem. C 9 10052Google Scholar

    [31]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [32]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [33]

    邓金秋, 汤仙童, 潘睿亨, 胡叶倩, 朱洪强, 熊祖洪, 陈晓莉 2018 科学通报 63 2974Google Scholar

    Deng J Q, Tang X T, Pan R H, Hu Y Q, Zhu H Q, Xiong Z H, Chen X L 2018 Chin. Sci. Bull. 63 2974Google Scholar

    [34]

    Jou J H, Lin W J, Shih S H, Wang Y S, Sahoo S, Singh M, Tsai Y C, Wen S W 2023 Electronics 12 2099Google Scholar

    [35]

    Chen P, Peng Q M, Yao L, Gao Na, Li F 2013 Appl. Phys. Lett. 102 063301

    [36]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [37]

    Liu H, Jia W Y, Zhang Y, Zhang Q M, Lei Y L, Lu C L, Ling Y Z, Xiong Z H 2014 Synth. Met. 198 6Google Scholar

    [38]

    Desai P, Shakya P, Kreouzis T, Gilin W P, Morley N A, Gibbs M R J 2007 Phys. Rev. B 75 094423Google Scholar

    [39]

    Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar

    [40]

    Baniya S, Pang Z Y, Sun D L, Zhai Y X, Kwon O, Choi H, Choi B, Lee S, Vardeny Z V 2016 Adv. Funct. Mater. 26 6930Google Scholar

    [41]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [42]

    Kim C Y, Lee C, Kim H J, Hwang J, Godumala M, Jeong J E, Woo H Y, Cho M J, Park S, Choi D H 2020 J. Mater. Chem. C 8 6780Google Scholar

    [43]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [44]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [45]

    Shao M, Yan L, Li M X, Ilia L, Hu B 2013 J. Mater. Chem. C 1 1330Google Scholar

  • [1] Wei Fu-Xian, Liu Jun-Hong, Peng Teng, Wang Bo, Zhu Hong-Qiang, Chen Xiao-Li, Xiong Zu-Hong. Detection of Dexter energy transfer process in interface-type OLED via utilizing the characteristic magneto-electroluminescence response of hot exciton reverse intersystem crossing. Acta Physica Sinica, 2023, 72(18): 187201. doi: 10.7498/aps.72.20230998
    [2] Wang Hui-Yao, Wei Fu-Xian, Wu Yu-Ting, Peng Teng, Liu Jun-Hong, Wang Bo, Xiong Zu-Hong. Enhanced reverse inter-system crossing process of charge-transfer stated induced by carrier balance in exciplex-type OLEDs. Acta Physica Sinica, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [3] Zhao Xi, Chen Jing, Peng Teng, Liu Jun-Hong, Wang Bo, Chen Xiao-Li, Xiong Zu-Hong. Non-monotonic current dependence of intersystem crossing and reverse intersystem crossing processes in exciplex-based organic light-emitting diodes. Acta Physica Sinica, 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [4] Wang Hui-Yao, Ning Ya-Ru, Wu Feng-Jiao, Zhao Xi, Chen Jing, Zhu Hong-Qiang, Wei Fu-Xian, Wu Yu-Ting, Xiong Zu-Hong. Reasons for “disappearance” phenomenon of both intersystem crossing of polaron-pair states and reverse intersystem crossing of high-lying triplet excitons in pure Rubrene-based OLEDs. Acta Physica Sinica, 2022, 71(21): 217201. doi: 10.7498/aps.71.20221060
    [5] Fan Chang-Jun, Wang Rui-Xue, Liu Zhen, Lei Yong, Li Guo-Qing, Xiong Zu-Hong, Yang Xiao-Hui. Phosphorescent hybrid organic-inorganic light emitting devices with solution-processed small molecule emissive layers. Acta Physica Sinica, 2015, 64(16): 167801. doi: 10.7498/aps.64.167801
    [6] Chen Qiu-Song, Yuan De, Jia Wei-Yao, Chen Li-Xiang, Zou Yue, Xiang Jie, Chen Ying-Bing, Zhang Qiao-Ming, Xiong Zu-Hong. Investigation of excitons fission and annihilation processes in Rubrene based devices by utilizing magneto-electroluminescence curves. Acta Physica Sinica, 2015, 64(17): 177801. doi: 10.7498/aps.64.177801
    [7] Chen Hai-Tao, Xu Zheng, Zhao Su-Ling, Zhao Ling, Liu Zhi-Min, Gao Song, Yang Yi-Fan, Liu Zhi-Fang, Shen Chong-Yu, Xu Xu-Rong. Organic light-emitting devices based on PCDTBT as emitting layer. Acta Physica Sinica, 2014, 63(16): 167802. doi: 10.7498/aps.63.167802
    [8] Lu Fei-Ping, Li Jian-Feng, Sun Shuo. Influence of the functional layer thickness on the light output property of tandem organic light emitting diode:a numerical study. Acta Physica Sinica, 2013, 62(24): 247201. doi: 10.7498/aps.62.247201
    [9] Zhang Xin-Wen, Hu Qi. Stability of organic light-emitting device. Acta Physica Sinica, 2012, 61(20): 207802. doi: 10.7498/aps.61.207802
    [10] Chen Su-Jie, Yu Jun-Sheng, Wen Wen, Jiang Ya-Dong. Influence of NPB:CBP modulated hole transporting layer on yellow organic light-emitting device characteristics. Acta Physica Sinica, 2011, 60(3): 037202. doi: 10.7498/aps.60.037202
    [11] Wang Jin, Zhao Yi, Xie Wen-Fa, Duan Yu, Chen Ping, Liu Shi-Yong. High-efficiency blue fluorescence organic light-emitting diodes with DPVBi inserted in the doping emmision layer. Acta Physica Sinica, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [12] Qiao Shi-Zhu, Zhao Jun-Qing, Jia Zhen-Feng, Zhang Ning-Yu, Wang Feng-Xiang, Fu Gang, Ji Yan-Ju. Formation and manipulation of singlet and triplet in spin-polarized organic light-emitting devices. Acta Physica Sinica, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [13] Niu Lian-Bin, Guan Yun-Xia. Fullerene-doped hole transport NPB layer in organic light-emitting devices. Acta Physica Sinica, 2009, 58(7): 4931-4935. doi: 10.7498/aps.58.4931
    [14] Wu Xiao-Ming, Hua Yu-Lin, Yin Shou-Gen, Zhang Guo-Hui, Hui Juan-Li, Zhang Li-Juan, Wang Yu. Properties of white organic electroluminescent device with double light-emitting layers based upon different hosts. Acta Physica Sinica, 2008, 57(2): 1150-1154. doi: 10.7498/aps.57.1150
    [15] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [16] Zhang Guo-Hui, Hua Yu-Lin, Wu Kong-Wu, Wu Xiao-Ming, Yin Shou-Gen, Hui Juan-Li, An Hai-Ping, Zhu Fei-Jian, Niu Xia. Using BCP layer to control the chroma of white phosphorescent organic light-emitting device. Acta Physica Sinica, 2007, 56(6): 3559-3563. doi: 10.7498/aps.56.3559
    [17] Zhang Xiao-Bo, Cao Jin, Wei Fu-Xiang, Jiang Xue-Yin, Zhang Zhi-Lin, Zhu Wen-Qing, Xu Shao-Hong. High efficiency organic red electrophosphorescence devices with changing thickness of the emitting layer. Acta Physica Sinica, 2006, 55(1): 119-124. doi: 10.7498/aps.55.119
    [18] Li Xiao-Wei. The dc Josephson current in superconductor-ferromagnet/insulator/spin-triplet p-wave superconductor junctions. Acta Physica Sinica, 2006, 55(12): 6637-6642. doi: 10.7498/aps.55.6637
    [19] Zhu Wen-Qing, Wu You-Zhi, Zheng Xin-You, Jiang Xue-Yin, Zhang Zhi-Lin, Sun Run-Guang, Xu Shao-Hong. Multicomponent excited-state emissions in a bilayer organic electroluminescent device. Acta Physica Sinica, 2004, 53(7): 2325-2329. doi: 10.7498/aps.53.2325
    [20] YANG SHENG-YI, XU ZHENG, LIU SHAN-SHAN, DONG JIN-FENG, ZHANG TING, XU XU-RONG, ZHANG LI, YANG ZHAN-LAN, WU JIN-GUANG. PURE GREEN AND NARROW BANDWIDTH ELECTROLUMINESCENCE FROM ORGANIC LIGHT-EMITTING DIODES . Acta Physica Sinica, 2001, 50(5): 973-976. doi: 10.7498/aps.50.973
Metrics
  • Abstract views:  3376
  • PDF Downloads:  66
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2023
  • Accepted Date:  01 August 2023
  • Available Online:  24 August 2023
  • Published Online:  05 November 2023

/

返回文章
返回