Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Lunar glass

Zhao Rui, Shen Lai-Quan, Chang Chao, Bai Hai-Yang, Wang Wei-Hua
PDF
HTML
Get Citation
  • Lunar glass, a significant component of lunar soil, is produced by non-equilibrium processes on the moon, such as volcanic eruptions, meteorite impacts, solar wind, and cosmic radiation. Lunar glass of different origins has ability to record historical information of the formation and evolution of the moon. This article presents a comprehensive review of the research progress of lunar glasses found within the CE-5 lunar soil. Delving into their fundamental physical properties and microstructure, we explore the specific mechanisms behind the formation of lunar glasses. Furthermore, this article focuses on the various roles that lunar glasses play in studies of lunar evolution, such as acting as a “natural camera” that captures the moon's internal and surface changes over different epochs, encompassing lunar origin, magma activity, impact events, space weathering, and the origin of water. The ultra-stable lunar glass with disordered atomic structure can sustainably preserve lunar resources. It is estimated that lunar glasses have reserved approximately 260000 tons of 3He, and 27 billion tons of water. Moreover, lunar glasses serve as an invaluable lunar chronometer, providing a reliable temporal framework to data volcanic activity and impact events. This temporal framework, in turn, serves as a vital tool for investigating the evolution of lunar water, magnetic fields and reconstructing the extensive billion-year history of lunar impacts.
      Corresponding author: Wang Wei-Hua, whw@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52192600, 61888102), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and the Major Project of Basic and Applied Basic Research of Guangdong Province, China (Grant No. 2019B030302010).
    [1]

    Zhao R, Shen L Q, Xiao D D, Chang C, Huang Y, Yu J H, Zhang H P, Liu M, Zhao S F, Yao W, Lu Z, Sun B A, Bai H Y, Zou Z G, Yang M F, Wang W H 2023 Natl. Sci. Rev. nwad079

    [2]

    Li C L, Hu H, Yang M F, Pei Z Y, Zhou Q, Ren X, Liu B, Liu D W, Zeng X G, Zhang G L, Zhang H B, Liu J J, Wang Q, Deng X J, Xiao C J, Yao Y G, Xue D S, Zuo W, Su Y, Wen W B, Ouyang Z Y 2022 Natl. Sci. Rev. 9 nwab188Google Scholar

    [3]

    Yan P, Xiao Z Y, Wu Y H, Yang W, Li J H, Gu L X, Liao S Y, Yin Z J, Wang H, Tian H C, Zhang C, Wu S P, Ma H X, Tang X, Wu S T, Hui H J, Xu Y C, Hsu W B, Li Q L, Luo F L, Liu Y, Li X H 2022 J. Geophys. Res. Planets 127 e2022JE007260Google Scholar

    [4]

    Yang W, Chen Y, Wang H, Tian H C, Hui H, Xiao Z Y, Wu S T, Zhang D, Zhou Q, Ma H X, Zhang C, Hu S, Li Q L, Lin Y T, Li X H, Wu F Y 2022 Geochim. Cosmochim. Acta 335 183Google Scholar

    [5]

    Gu L X, Chen Y J, Xu Y C, Tang X, Lin Y T, Noguchi T, Li J H 2022 Geophys. Res. Lett. 49 e2022GL097875Google Scholar

    [6]

    Guo Z, Li C, Li Y, Wen Y Y, Tai K R, Li X Y, Liu J Z, Ouyang Z Y 2022 Geophys. Res. Lett. 49 e2021GL097323Google Scholar

    [7]

    Li C, Guo Z, Li Y, Tai K R, Wei K X, Li X Y, Liu J Z, Ma W H 2022 Nat. Astron. 6 1156Google Scholar

    [8]

    Lu X J, Chen J, Ling Z, Liu C Q, Fu X H, Qiao L, Zhang J, Cao H J, Liu J Z, He Z P, Xu R 2022 Nat. Astron. 7 142Google Scholar

    [9]

    Xian H Y, Zhu J X, Yang Y P, Li S, Lin X J, Xi J X, Xing J Q, Wu X, Yang H M, Zhou Q, Tsuchiyama A, He H P, Xu Y G 2023 Nat. Astron. 7 280Google Scholar

    [10]

    Long T, Qian Y Q, Norman M D, Miljkovic K, Crow C, Head J W, Che X C, Tartèse R, Zellner N, Yu X F, Xie S W, Whitehouse M, Joy K H, Neal C R, Snape J F, Zhou G S, Liu S J, Yang C, Yang Z Q, Wang C, Xiao L, Liu D Y, Nemchin A 2022 Sci. Adv. 8 eabq2542Google Scholar

    [11]

    Li A, Chen X, Song L J, Chen G X, Xu W, Huo J T, Gao M, Li M, Zhang L, Yao B N, Ji M, Zhang Y, Zhao S F, Yao W, Liu Y H, Wang J Q, Bai H Y, Zou Z G, Yang M F, Wang W H 2022 Mater. Futures. 1 035101Google Scholar

    [12]

    He H C, Ji J L, Zhang Y, Hu S, Lin Y T, Hui H J, Hao J L, Li R Y, Yang W, Tian H C, Zhang C, Anand M, Tartèse R, Gu L X, Li J H, Zhang D, Mao Q, Jia L H, Li X G, Chen Y, Zhang L, Ni H W, Wu S T, Wang H, Li Q L, He H Y, Li X H, Wu F Y 2023 Nat. Geosci. 16 294Google Scholar

    [13]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [14]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [15]

    Zhao Y, Shang B S, Zhang B, Tong X, Ke H B, Bai H Y, Wang W H 2022 Sci. Adv. 8 eabn3623Google Scholar

    [16]

    Angell C A 1995 Science 267 1924Google Scholar

    [17]

    Heiken G H, Vaniman D T, French B M 1991 Lunar Sourcebook: A User's Guide to the Moon (Cambridge: Cambridge University Press) pp1–721

    [18]

    Bibring J P, Duraud J P, Durrieu L, Jouret C, Maurette M, Meunier R 1972 Science 175 753Google Scholar

    [19]

    Bibring J P, Langevin Y, Maurette M, Meunier R, Jouffrey B, Jouret C 1974 Earth Planet. Sci. Lett. 22 205Google Scholar

    [20]

    Nichols R H J, Hohenberg C M, Olinger C T 1994 Geochim. Cosmochim. Acta 58 1031Google Scholar

    [21]

    Tartèse R, Anand M, Gattacceca J, Joy K H, Mortimer J I, Pernet-Fisher J F, Russell S, Snape J F, Weiss B P 2019 Space Sci. Rev. 215 54Google Scholar

    [22]

    Zellner N E B 2019 J. Geophys. Res. Planets 124 2686Google Scholar

    [23]

    Saal A E, Hauri E H, Cascio M L, Van Orman J A, Rutherford M C, Cooper R F 2008 Nature 454 192Google Scholar

    [24]

    Delano J W, Livi K 1981 Geochim. Cosmochim. Acta 45 2137Google Scholar

    [25]

    Canup R M, Asphaug E 2001 Nature 412 708Google Scholar

    [26]

    Wetzel D T, Hauri E H, Saal A E, Rutherford M J 2015 Nat. Geosci. 8 755Google Scholar

    [27]

    Saal A E, Hauri E H 2021 Sci. Adv. 7 eabe4641Google Scholar

    [28]

    Culler T S, Becker T A, Muller R A, Renne P R 2000 Science 287 1785Google Scholar

    [29]

    Saal A E, Hauri E H, Van Orman J A, Rutherford M J 2013 Science 340 1317Google Scholar

    [30]

    Liu Y, Guan Y B, Zhang Y X, Rossman G R, Eiler J M, Taylor L A 2012 Nat. Geosci. 5 779Google Scholar

    [31]

    Bradley J P, Ishii H A, Gillis-Davis J J, Ciston J, Nielsen M H, Bechtel H A, Martin M C 2014 Proc. Natl. Acad. Sci. 111 1732Google Scholar

    [32]

    Li S, Milliken R E 2017 Sci. Adv. 3 e1701471Google Scholar

    [33]

    Pieters C M, Taylor L A, Noble S K, Keller L P, Hapke B, Morris R V, Allen C C, McKAY D S, Wentworth S 2000 Meteorit. Planet. Sci. 35 1101Google Scholar

    [34]

    Hapke B 2001 J. Geophys. Res. Planets 106 10039Google Scholar

    [35]

    Pieters C M, Noble S K 2016 J. Geophys. Res. Planets 121 1865Google Scholar

    [36]

    Noguchi T, Nakamura T, Kimura M, Zolensky M E, Tanaka M, Hashimoto T, Konno M, Nakato A, Ogami T, Fujimura A, Abe M, Yada T, Mukai T, Ueno M, Okada T, Shirai K, Ishibashi Y, Okazaki R 2011 Science 333 1121Google Scholar

    [37]

    Hu S, He H C, Ji J L, Lin Y T, Hui H J, Anand M, Tartèse R, Yan Y H, Hao J L, Li R Y, Gu L X, Guo Q, He H Y, Ouyang Z Y 2021 Nature 600 49Google Scholar

    [38]

    Li Q L, Zhou Q, Liu Y, Xiao Z Y, Lin Y T, Li J H, Ma H X, Tang G Q, Guo S, Tang X, Yuan J Y, Li J, Wu F Y, Ouyang Z Y, Li C L, Li X H 2021 Nature 600 54Google Scholar

    [39]

    Tian H C, Wang H, Chen Y, Yang W, Zhou Q, Zhang C, Lin H L, Huang C, Wu S T, Jia L H, Xu L, Zhang D, Li X G, Chang R, Yang Y H, Xie L W, Zhang D P, Zhang G L, Yang S H, Wu F Y 2021 Nature 600 59Google Scholar

    [40]

    Che X C, Nemchin A, Liu D Y, Long T, Wang C, Norman M D, Joy K H, Tartese R, Head J, Jolliff B, Snape J F, Neal C R, Whitehouse M J, Crow C, Benedix G, Jourdan F, Yang Z Q, Yang C, Liu J H, Xie S W, Bao Z M, Fan R L, Li D P, Li Z S, Webb S G 2021 Science 374 887Google Scholar

    [41]

    Cao H J, Wang C, Chen J, Che X C, Fu X H, Shi Y R, Liu D Y, Ling Z C, Qiao L, Lu X J, Qi X B, Yin C X, Liu P, Liu C Q, Xin Y Q, Liu J Z 2022 Geophys. Res. Lett. 49 e2022GL099282Google Scholar

    [42]

    Zhang H, Zhang X, Zhang G, Dong K Q, Deng X J, Gao X S, Yang Y D, Xiao Y, Bai X, Liang K X, Liu Y W, Ma W B, Zhao S F, Zhang C, Zhang X J, Song J, Yao W, Chen H, Wang W H, Zou Z G, Yang M F 2022 Sci. China: Phys., Mech. Astron. 65 229511Google Scholar

    [43]

    Liu J J, Liu B, Ren X, Li C L, Shu R, Guo L, Yu S Z, Zhou Q, Liu D W, Zeng X G, Gao X Y, Zhang G L, Yan W, Zhang H B, Jia L H, Jin S F, Xu C H, Deng X J, Xie J F, Yang J F, Huang C N, Zuo W, Su Y, Wen W B, Ouyang Z Y 2022 Nat. Commun. 13 3119Google Scholar

    [44]

    Zhou C J, Tang H, Li X Y, Zeng X J, Mo B, Yu W, Wu Y X, Zeng X D, Liu J Z, Wen Y Y 2022 Nat. Commun. 13 5336Google Scholar

    [45]

    Xu Y C, Tian H C, Zhang C, Chaussidon M, Lin Y T, Hao J L, Li R Y, Gu L X, Yang W, Huang L Y, Du J, Yang Y Z, Liu Y, He H Y, Zou Y L, Li X H, Wu F Y 2022 Proc. Natl. Acad. Sci. 119 e2214395119Google Scholar

    [46]

    Mueller G, Hinsch G W 1970 Nature 228 254Google Scholar

    [47]

    Chernyak Y B, Nussinov M D 1976 Nature 261 664Google Scholar

    [48]

    Pugh M J 1972 Nature 237 158Google Scholar

    [49]

    Bastin J A 1980 Nature 283 108

    [50]

    Delano J W 1986 J. Geophys. Res. Solid Earth 91 201Google Scholar

    [51]

    Zeigler R A, Korotev R L, Jolliff B L, Haskin L A, Floss C 2006 Geochim. Cosmochim. Acta 70 6050Google Scholar

    [52]

    Tsuchiyama A, Sakurama T, Nakano T, Uesugi K, Ohtake M, Matsushima T, Terakado K, Galimov E M 2022 Earth Planets Space 74 172Google Scholar

    [53]

    Yan W, Richard I, Kurtuldu G, James N D, Schiavone G, Squair J W, Nguyen‐Dang T, Das Gupta T, Qu Y, Cao J D, Ignatans R, Lacour S P, Tileli V, Courtine G, Löffler J F, Sorin F 2020 Nat. Nanotechnol. 15 875Google Scholar

    [54]

    Naser M Z 2019 Prog. Mater. Sci. 105 100577Google Scholar

    [55]

    Guo Z S, Xing D, Xi X Y, Yue X, Liang C G, Hao B, Zheng Q B, Gutnikov S I, Lazoryak B I, Ma P C 2022 Adv. Fiber. Mater. 4 923Google Scholar

    [56]

    Housley R M, Grant R W, Paton N E 1973 Geochim. Cosmoschim. Acta 3 2737

    [57]

    Nakamura E, Makishima A, Moriguti T, Kobayashi K, Tanaka R, Kunihiro T, Tsujimori T, Sakaguchi C, Kitagawa H, Ota T, Yachi Y, Yada T, Abe M, Fujimura A, Ueno M, Mukai T, Yoshikawa M, Kawaguchi J I 2012 Proc. Natl. Acad. Sci. 109 E624Google Scholar

    [58]

    Hörz F, Brownlee D E, Fechtig H, Hartung J B, Morrison D A, Neukum G, Schneider E, Vedder J F, Gault D E 1975 Planet. Space Sci. 23 151Google Scholar

    [59]

    Morrison D A, Clanton U S 1979 Proc. Lunar Planet. Sci. Conf. 10 1649

    [60]

    Pieters C M, Ammannito E, Blewett D T, Denevi B W, De Sanctis M C, Gaffey M J, Le Corre L, Li J Y, Marchi S, McCord T B, McFadden L A, Mittlefehldt D W, Nathues A, Palmer E, Reddy V, Raymond C A, Russell C T 2012 Nature 491 79Google Scholar

    [61]

    Matsumoto T, Hasegawa S, Nakao S, Sakai M, Yurimoto H 2018 Icarus 303 22Google Scholar

    [62]

    Keller L P, McKay D S 1997 Geochim. Cosmochim. Acta 61 2331Google Scholar

    [63]

    Sasaki S, Nakamura K, Hamabe Y, Kurahashi E, Hiroi T 2001 Nature 410 555Google Scholar

    [64]

    Keller L P, McKay D S 1993 Science 261 1305Google Scholar

    [65]

    Hapke B, Cassidy W, Wells E 1975 The Moon 13 339Google Scholar

    [66]

    Taylor L A, Pieters C, Keller L P, Morris R V, McKAY D S, Patchen A, Wentworth S 2001 Meteorit. Planet. Sci. 36 285Google Scholar

    [67]

    Weber I, Stojic A N, Morlok A, Reitze M P, Markus K, Hiesinger H, Pavlov S G, Wirth R, Schreiber A, Sohn M, Hübers H W, Helbert J 2020 Earth Planet. Sci. Lett. 530 115884Google Scholar

    [68]

    McCord T B, Taylor L A, Combe J P, Kramer G, Pieters C M, Sunshine J M, Clark R N 2011 J. Geophys. Res. Planets 116 E00G05Google Scholar

    [69]

    Jia M N, Yue Z Y, Di K C, Liu B, Liu J Z, Michael G 2020 Earth Planet. Sci. Lett. 541 116272Google Scholar

    [70]

    Yang Y Z, Li S, Zhu M H, Liu Y, Wu B, Du J, Fa W Z, Xu R, He Z P, Wang C, Xue B, Yang J F, Zou Y L 2022 Nat. Astron. 6 207Google Scholar

    [71]

    Barnes J J, Kring D A, Tartese R, Franchi I A, Anand M, Russell S S 2016 Nat. Commun. 7 11684Google Scholar

    [72]

    Le Bars M, Wieczorek M A, Karatekin Ö, Cébron D, Laneuville M 2011 Nature 479 215Google Scholar

    [73]

    Chapman C R 2004 Annu. Rev. Earth Planet. Sci. 32 539Google Scholar

    [74]

    Lucey P G, Riner M A 2011 Icarus 212 451Google Scholar

    [75]

    Hiroi T, Abe M, Kitazato K, Abe S, Clark B E, Sasaki S, Ishiguro M, Barnouin-Jha O S 2006 Nature 443 56Google Scholar

    [76]

    Vernazza P, Binzel R P, Rossi A, Fulchignoni M, Birlan M 2009 Nature 458 993Google Scholar

    [77]

    Tai Udovicic C J, Costello E S, Ghent R R, Edwards C S 2021 Geophys. Res. Lett. 48 e2020GL092198Google Scholar

    [78]

    Bindi L, Shim S H, Sharp T G, Xie X D 2020 Sci. Adv. 6 eaay7893Google Scholar

    [79]

    Guo Z, Li Y, Liu S, Xu H F, Xie Z D, Li S J, Li X Y, Lin Y T, Coulson I M, Zhang M M 2020 Geochim. Cosmochim. Acta 272 276Google Scholar

    [80]

    Guo Z, Li Y, Chen H Y, Zhang M M, Wu Y X, Hui B, Liu S, Coulson I M, Li S J, Li X Y, Liu J Z, Ouyang Z Y 2021 J. Geophys. Res. Planets 126 e2020JE006816Google Scholar

    [81]

    Asimow P D, Langmuir C H 2003 Nature 421 815Google Scholar

    [82]

    Lin Y H, Tronche E J, Steenstra E S, van Westrenen W 2017 Nat. Geosci. 10 14Google Scholar

    [83]

    Hirth G, Kohlstedt D L 1996 Earth Planet. Sci. Lett. 144 93Google Scholar

    [84]

    Gaetani G A, Grove T L 1998 Contrib. Mineral. Petr. 131 323Google Scholar

    [85]

    Chaussidon M 2008 Nature 454 171Google Scholar

    [86]

    Wittenberg L J, Santarius J F, Kulcinski G L 1986 Fusion Technol. 10 167Google Scholar

    [87]

    Starukhina L V 2006 Adv. Space Res. 37 50Google Scholar

    [88]

    Lucey P G 2009 Science 326 531Google Scholar

    [89]

    Clark R N 2009 Science 326 562Google Scholar

    [90]

    Pieters C M, Goswami J N, Clark R N, et al. 2009 Science 326 568Google Scholar

    [91]

    Sunshine J M, Farnham T L, Feaga L M, Groussin O, Merlin F, Milliken R E, A’Hearn M F 2009 Science 326 565Google Scholar

    [92]

    Colaprete A, Schultz P, Heldmann J, et al. 2010 Science 330 463Google Scholar

    [93]

    Woehler C, Grumpe A, Berezhnoy A A, Shevchenko V V 2017 Sci. Adv. 3 e1701286Google Scholar

    [94]

    Farrell W M, Hurley D M, Zimmerman M I 2015 Icarus 255 116Google Scholar

    [95]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [96]

    Zhao J, Simon S L, McKenna G B 2013 Nat. Commun. 4 1783Google Scholar

  • 图 1  液体冷却过程发生晶化和玻璃转变两种情形的示意图, 液体快冷、气相沉积和离子辐照等各种非平衡过程都可以产生结构无序的玻璃物质

    Figure 1.  Schematic diagram of the liquid cooling process showing crystallization and glass transition. Various non-equilibrium processes such as rapid cooling of liquids, vapor deposition, and ion irradiation can produce glassy materials with disordered atomic structure.

    图 2  月球表面严酷空间环境的示意图[1]. 月球表面存在着陨石撞击、太阳风辐照和宇宙射线辐射等一系列剧烈的非平衡过程

    Figure 2.  Schematic diagram of the harsh space environment on the lunar surface[1]. The lunar surface undergoes a series of intense non-equilibrium processes, including meteoroid impacts, solar wind irradiation, and cosmic ray radiation.

    图 3  CE-5月壤中形态各异的玻璃珠[1] (a)—(p)玻璃珠的SEM照片; (q)形成旋转形状颗粒的液体旋转机制示意图

    Figure 3.  Diverse glass beads in CE-5 lunar soils[1]: (a)–(p) SEM images of glass beads; (q) schematic diagram of the rotation mechanism leading to the formation of glass beads with rotational shapes.

    图 4  CE-5月壤中独特的玻璃纤维[1] (a)—(h)不同玻璃纤维的SEM照片; (i) 撞击产生的熔融液体的黏度温度关系的示意图, 低速度撞击产生的熔体温度低黏度大, 容易在撞击过程中被热拉拔形成细长的玻璃纤维

    Figure 4.  Unique glass fibers in CE-5 lunar soils[1]: (a)–(h) SEM images of different glass fibers; (i) schematic diagram showing the viscosity-temperature relationship of impact-generated melt, the impact with lower speed results in melt with lower temperature and higher viscosity, making it easier to be thermally drawn into uniform thin glass fibers.

    图 5  CE-5月壤中微陨石撞击产生的各种粘结在月壤颗粒表面的玻璃物质[1] (a), (b) 颗粒表面胶结物玻璃的SEM照片; (c), (d) 颗粒表面泼溅状粘结玻璃的SEM照片; (e) 颗粒表面单独的液滴状玻璃的SEM照片; (f), (g) 颗粒表面密集的液体状玻璃的SEM照片; (h), (i), (j) 颗粒表面密集分布的微陨石撞击坑的SEM照片, 撞击坑的内衬和上部的环为玻璃物质; (k) 图(g)中液体状玻璃和图(j)中微陨石撞击坑的尺寸分布统计

    Figure 5.  Various glass materials formed by micro-meteoroid impacts and adhering to CE-5 soil particles[1]: (a), (b) SEM images of agglutinate-like glasses on particle surfaces; (c), (d) SEM images of molten splash-like glasses on particle surfaces; (e) SEM image of isolated droplets of glass on particle surfaces; (f), (g) SEM images of densely distributed droplets of glass on particle surfaces; (h), (i), (j) SEM images of densely distributed microcraters on particle surfaces, the microcrater interiors and upper rims are composed of glassy material; (k) size distribution statistics of glass droplets in image (g) and microcraters in image (j).

    图 6  CE-5月壤颗粒表面的沉积非晶层[1] (a) 一个玻璃颗粒边缘的扫描透射电子显微镜(STEM)的高角环形暗场像(HAADF); (b)—(d) 标记区域放大的HAADF照片; (e) 标记区域放大的高分辨TEM照片, 可以看到颗粒最外层存在一个厚几个纳米的非晶层, 非晶层中不含有纳米铁, 而非晶层之下的颗粒内部含有大小不一的纳米铁颗粒; (g), (h) 其他颗粒表面的高分辨TEM照片, 同样可以观察到清晰的表面非晶层; (c), (f) 对应区域的EDS面扫和线扫结果, 显示表面非晶层和内部颗粒的成分明显不同, 仅有Si和O组成, 证明它们是沉积作用产生的; (i) CE-5月壤颗粒表面沉积非晶层厚度的统计图

    Figure 6.  Vapor deposited amorphous rims on CE-5 soil particles[1]: (a) High-angle annular dark-field image (HAADF) of a glass particle; (b)–(d) enlarged HAADF images of the marked regions; (e) high-resolution transmission electron microscope (TEM) image of the marked region, it can be observed that the outermost layer of the particle contains a few nanometers thick amorphous layer, which does not contain nanophase iron particles (npFe0), while the interior of the particle below the amorphous layer contains npFe0 of varying sizes; (g), (h) high-resolution TEM images of other particle surfaces, clearly visible surface amorphous layers can also be observed; (c), (f) energy-dispersive X-ray spectroscopy (EDS) elemental mapping and line scan results of the corresponding regions, showing distinct composition differences between the surface amorphous rims and the interior particles, consisting mainly of Si and O, indicating that they are formed by deposition processes; (i) statistics of the thickness of the vapor deposited rims on CE-5 soil particles.

    图 7  CE-5月壤颗粒表面的辐照非晶层[1] (a) 一个斜长石颗粒的TEM照片; (b) 颗粒的HAADF图像和EDS成分测试结果; (c) 颗粒边缘标记处的TEM照片, 可以清晰看到晶体颗粒的表面具有一层非晶层, 非晶和晶体的界面呈现锐利的锯齿状; (d) 非晶-晶体界面附近的高分辨TEM照片, 对应区域的快速傅里叶变换证实了两个区域的非晶和晶体结构

    Figure 7.  Solar wind irradiation-induced amorphous rims[1]: (a) TEM images of a filament of the inserted plagioclase grain; (b) HAADF images and EDS maps of the filament; (c) HRTEM images of the edge of the filament marked in (a), there exists a clear amorphous rim non-uniformly coating on the surface of the grain. Distinct from the vapor deposited amorphous rims, the rim in (c) does not have chemical differences with the host grain and the interface between the rim and the matrix is sharply serrated rim (marked by the dashed line), indicating its origin of ion implantation by solar wind irradiation; (d) HRTEM images of the interface between the amorphous rim and the crystalline matrix, fast Fourier transform of the marked rim and matrix regions in (d), confirming their amorphous (top right) and crystalline (bottom right) nature accordingly.

    图 8  月球表面的太空风化效应, 陨石撞击等太空风化作用在月壤中产生纳米铁颗粒, 不同尺寸的纳米铁颗粒产生了发红和发暗的效果 (a) 脉冲激光轰击前后的反射光谱, 用于模拟微陨石撞击导致的太空风化过程[63]; (b) 图(a)中的反射光谱在550 nm处归一化, 可以看到风化后反射率降低(即发暗), 可见光波段降低的程度比近红外波段更大(即发红)[63]; (c) Apollo月壤长石颗粒表面沉积非晶层中的小尺寸纳米铁[33]; (d) Apollo月壤胶结物玻璃中的小尺寸和大尺寸纳米铁[33]

    Figure 8.  Space weathering effects on the lunar surface. Space weathering processes such as meteoroid impacts lead to the formation of npFe0 in lunar soils, resulting in reddening and darkening effects: (a) Reflectance spectra before and after pulsed laser irradiation, used to simulate space weathering processes caused by micro-meteoroid impacts[63]; (b) normalized reflectance spectra at 550 nm from the data in image (a), it can be observed that the reflectance decreases after weathering, resulting in darkening; the visible wavelength range experiences a larger decrease than the near-infrared wavelength range, leading to reddening[63]; (c) small-sized npFe0 in the depositional amorphous layer on the surface of Apollo lunar soil feldspar particles[33]; (d) small-sized and large-sized nanoscale iron particles in the agglutinates in Apollo lunar soils[33].

    图 9  CE-5月壤撞击玻璃珠内部的纳米铁颗粒 (a) 聚焦离子束切出来的玻璃珠截面的高分辨TEM照片; (b) (a)中标记区域的高倍高分辨TEM照片, 内部箭头指示的黑色颗粒为纳米金属铁颗粒; (c) 纳米铁颗粒的高分辨TEM照片, 插图为对应的快速傅里叶变换

    Figure 9.  npFe0 inside impact glass beads CE-5 lunar soils: (a) TEM image of a cross-section of a glass bead cut by focused ion beam; (b) TEM image of the marked region in (a), the black particles indicated by internal arrows are npFe0; (c) TEM image of the npFe0, the inset shows the corresponding fast Fourier transform.

    图 10  CE-5月壤钛铁矿颗粒表面玻璃物质捕捉的He[11] (a) 聚焦离子束切出来的颗粒截面的高分辨TEM照片; (b), (c) 表面玻璃物质和He气泡的高倍高分辨TEM照片; (d) 图(a)中不同位置的电子能量损失谱

    Figure 10.  Helium trapped by glassy material on ilmenite particles in CE-5 lunar soils[11]: (a) TEM image of a cross-section of a particle cut by focused ion beam; (b), (c) TEM images of the surface glassy material and helium bubbles; (d) electron energy loss spectra from different positions in image (a).

    图 11  CE-5月壤中撞击玻璃珠保存大量的水[12] (a) 撞击玻璃截面的SEM照片; (b) 撞击玻璃沿(a)中Profile 1路径不同位置的水含量, 呈现出表面水含量高内部水含量低的特征; (c)—(e) 撞击玻璃保存和释放太阳风H离子注入产生的水的示意图, 据估计, 月壤中撞击玻璃珠保存的水的总含量高达2.7 × 1014 kg

    Figure 11.  Abundance of water preserved in impact glass beads of CE-5 lunar soils: (a) SEM image of a cross-section of an impact glass bead; (b) water content at different positions along profile 1 of the impact glass as shown in (a), revealing higher surface water content compared to the interior; (c)–(e) schematic of the retention and release of water in the impact glass, it is estimated that the total water content preserved in impact glass beads in lunar soils can reach up to 2.7 × 1014 kg.

    图 12  U-Pb同位素定年方法测定CE-5撞击玻璃的年龄来重构20亿年来的撞击历史[10]

    Figure 12.  U-Pb isotope dating method used to determine the age of impact glass in CE-5 soils to reconstruct the impact history over 2 billion years[10].

    图 13  基于玻璃结构弛豫进行定年的构想图 (a) 玻璃能垒图示意图[15]; (b) 玻璃的能量、结构、密度和模量等随时间弛豫的示意图

    Figure 13.  Schematic diagram of dating based on structural relaxation of glasses: (a) Illustration of the energy barrier diagram for strong glasses[15]; (b) schematic of the change of energy, structure, density, and modulus of glass over time.

  • [1]

    Zhao R, Shen L Q, Xiao D D, Chang C, Huang Y, Yu J H, Zhang H P, Liu M, Zhao S F, Yao W, Lu Z, Sun B A, Bai H Y, Zou Z G, Yang M F, Wang W H 2023 Natl. Sci. Rev. nwad079

    [2]

    Li C L, Hu H, Yang M F, Pei Z Y, Zhou Q, Ren X, Liu B, Liu D W, Zeng X G, Zhang G L, Zhang H B, Liu J J, Wang Q, Deng X J, Xiao C J, Yao Y G, Xue D S, Zuo W, Su Y, Wen W B, Ouyang Z Y 2022 Natl. Sci. Rev. 9 nwab188Google Scholar

    [3]

    Yan P, Xiao Z Y, Wu Y H, Yang W, Li J H, Gu L X, Liao S Y, Yin Z J, Wang H, Tian H C, Zhang C, Wu S P, Ma H X, Tang X, Wu S T, Hui H J, Xu Y C, Hsu W B, Li Q L, Luo F L, Liu Y, Li X H 2022 J. Geophys. Res. Planets 127 e2022JE007260Google Scholar

    [4]

    Yang W, Chen Y, Wang H, Tian H C, Hui H, Xiao Z Y, Wu S T, Zhang D, Zhou Q, Ma H X, Zhang C, Hu S, Li Q L, Lin Y T, Li X H, Wu F Y 2022 Geochim. Cosmochim. Acta 335 183Google Scholar

    [5]

    Gu L X, Chen Y J, Xu Y C, Tang X, Lin Y T, Noguchi T, Li J H 2022 Geophys. Res. Lett. 49 e2022GL097875Google Scholar

    [6]

    Guo Z, Li C, Li Y, Wen Y Y, Tai K R, Li X Y, Liu J Z, Ouyang Z Y 2022 Geophys. Res. Lett. 49 e2021GL097323Google Scholar

    [7]

    Li C, Guo Z, Li Y, Tai K R, Wei K X, Li X Y, Liu J Z, Ma W H 2022 Nat. Astron. 6 1156Google Scholar

    [8]

    Lu X J, Chen J, Ling Z, Liu C Q, Fu X H, Qiao L, Zhang J, Cao H J, Liu J Z, He Z P, Xu R 2022 Nat. Astron. 7 142Google Scholar

    [9]

    Xian H Y, Zhu J X, Yang Y P, Li S, Lin X J, Xi J X, Xing J Q, Wu X, Yang H M, Zhou Q, Tsuchiyama A, He H P, Xu Y G 2023 Nat. Astron. 7 280Google Scholar

    [10]

    Long T, Qian Y Q, Norman M D, Miljkovic K, Crow C, Head J W, Che X C, Tartèse R, Zellner N, Yu X F, Xie S W, Whitehouse M, Joy K H, Neal C R, Snape J F, Zhou G S, Liu S J, Yang C, Yang Z Q, Wang C, Xiao L, Liu D Y, Nemchin A 2022 Sci. Adv. 8 eabq2542Google Scholar

    [11]

    Li A, Chen X, Song L J, Chen G X, Xu W, Huo J T, Gao M, Li M, Zhang L, Yao B N, Ji M, Zhang Y, Zhao S F, Yao W, Liu Y H, Wang J Q, Bai H Y, Zou Z G, Yang M F, Wang W H 2022 Mater. Futures. 1 035101Google Scholar

    [12]

    He H C, Ji J L, Zhang Y, Hu S, Lin Y T, Hui H J, Hao J L, Li R Y, Yang W, Tian H C, Zhang C, Anand M, Tartèse R, Gu L X, Li J H, Zhang D, Mao Q, Jia L H, Li X G, Chen Y, Zhang L, Ni H W, Wu S T, Wang H, Li Q L, He H Y, Li X H, Wu F Y 2023 Nat. Geosci. 16 294Google Scholar

    [13]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [14]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [15]

    Zhao Y, Shang B S, Zhang B, Tong X, Ke H B, Bai H Y, Wang W H 2022 Sci. Adv. 8 eabn3623Google Scholar

    [16]

    Angell C A 1995 Science 267 1924Google Scholar

    [17]

    Heiken G H, Vaniman D T, French B M 1991 Lunar Sourcebook: A User's Guide to the Moon (Cambridge: Cambridge University Press) pp1–721

    [18]

    Bibring J P, Duraud J P, Durrieu L, Jouret C, Maurette M, Meunier R 1972 Science 175 753Google Scholar

    [19]

    Bibring J P, Langevin Y, Maurette M, Meunier R, Jouffrey B, Jouret C 1974 Earth Planet. Sci. Lett. 22 205Google Scholar

    [20]

    Nichols R H J, Hohenberg C M, Olinger C T 1994 Geochim. Cosmochim. Acta 58 1031Google Scholar

    [21]

    Tartèse R, Anand M, Gattacceca J, Joy K H, Mortimer J I, Pernet-Fisher J F, Russell S, Snape J F, Weiss B P 2019 Space Sci. Rev. 215 54Google Scholar

    [22]

    Zellner N E B 2019 J. Geophys. Res. Planets 124 2686Google Scholar

    [23]

    Saal A E, Hauri E H, Cascio M L, Van Orman J A, Rutherford M C, Cooper R F 2008 Nature 454 192Google Scholar

    [24]

    Delano J W, Livi K 1981 Geochim. Cosmochim. Acta 45 2137Google Scholar

    [25]

    Canup R M, Asphaug E 2001 Nature 412 708Google Scholar

    [26]

    Wetzel D T, Hauri E H, Saal A E, Rutherford M J 2015 Nat. Geosci. 8 755Google Scholar

    [27]

    Saal A E, Hauri E H 2021 Sci. Adv. 7 eabe4641Google Scholar

    [28]

    Culler T S, Becker T A, Muller R A, Renne P R 2000 Science 287 1785Google Scholar

    [29]

    Saal A E, Hauri E H, Van Orman J A, Rutherford M J 2013 Science 340 1317Google Scholar

    [30]

    Liu Y, Guan Y B, Zhang Y X, Rossman G R, Eiler J M, Taylor L A 2012 Nat. Geosci. 5 779Google Scholar

    [31]

    Bradley J P, Ishii H A, Gillis-Davis J J, Ciston J, Nielsen M H, Bechtel H A, Martin M C 2014 Proc. Natl. Acad. Sci. 111 1732Google Scholar

    [32]

    Li S, Milliken R E 2017 Sci. Adv. 3 e1701471Google Scholar

    [33]

    Pieters C M, Taylor L A, Noble S K, Keller L P, Hapke B, Morris R V, Allen C C, McKAY D S, Wentworth S 2000 Meteorit. Planet. Sci. 35 1101Google Scholar

    [34]

    Hapke B 2001 J. Geophys. Res. Planets 106 10039Google Scholar

    [35]

    Pieters C M, Noble S K 2016 J. Geophys. Res. Planets 121 1865Google Scholar

    [36]

    Noguchi T, Nakamura T, Kimura M, Zolensky M E, Tanaka M, Hashimoto T, Konno M, Nakato A, Ogami T, Fujimura A, Abe M, Yada T, Mukai T, Ueno M, Okada T, Shirai K, Ishibashi Y, Okazaki R 2011 Science 333 1121Google Scholar

    [37]

    Hu S, He H C, Ji J L, Lin Y T, Hui H J, Anand M, Tartèse R, Yan Y H, Hao J L, Li R Y, Gu L X, Guo Q, He H Y, Ouyang Z Y 2021 Nature 600 49Google Scholar

    [38]

    Li Q L, Zhou Q, Liu Y, Xiao Z Y, Lin Y T, Li J H, Ma H X, Tang G Q, Guo S, Tang X, Yuan J Y, Li J, Wu F Y, Ouyang Z Y, Li C L, Li X H 2021 Nature 600 54Google Scholar

    [39]

    Tian H C, Wang H, Chen Y, Yang W, Zhou Q, Zhang C, Lin H L, Huang C, Wu S T, Jia L H, Xu L, Zhang D, Li X G, Chang R, Yang Y H, Xie L W, Zhang D P, Zhang G L, Yang S H, Wu F Y 2021 Nature 600 59Google Scholar

    [40]

    Che X C, Nemchin A, Liu D Y, Long T, Wang C, Norman M D, Joy K H, Tartese R, Head J, Jolliff B, Snape J F, Neal C R, Whitehouse M J, Crow C, Benedix G, Jourdan F, Yang Z Q, Yang C, Liu J H, Xie S W, Bao Z M, Fan R L, Li D P, Li Z S, Webb S G 2021 Science 374 887Google Scholar

    [41]

    Cao H J, Wang C, Chen J, Che X C, Fu X H, Shi Y R, Liu D Y, Ling Z C, Qiao L, Lu X J, Qi X B, Yin C X, Liu P, Liu C Q, Xin Y Q, Liu J Z 2022 Geophys. Res. Lett. 49 e2022GL099282Google Scholar

    [42]

    Zhang H, Zhang X, Zhang G, Dong K Q, Deng X J, Gao X S, Yang Y D, Xiao Y, Bai X, Liang K X, Liu Y W, Ma W B, Zhao S F, Zhang C, Zhang X J, Song J, Yao W, Chen H, Wang W H, Zou Z G, Yang M F 2022 Sci. China: Phys., Mech. Astron. 65 229511Google Scholar

    [43]

    Liu J J, Liu B, Ren X, Li C L, Shu R, Guo L, Yu S Z, Zhou Q, Liu D W, Zeng X G, Gao X Y, Zhang G L, Yan W, Zhang H B, Jia L H, Jin S F, Xu C H, Deng X J, Xie J F, Yang J F, Huang C N, Zuo W, Su Y, Wen W B, Ouyang Z Y 2022 Nat. Commun. 13 3119Google Scholar

    [44]

    Zhou C J, Tang H, Li X Y, Zeng X J, Mo B, Yu W, Wu Y X, Zeng X D, Liu J Z, Wen Y Y 2022 Nat. Commun. 13 5336Google Scholar

    [45]

    Xu Y C, Tian H C, Zhang C, Chaussidon M, Lin Y T, Hao J L, Li R Y, Gu L X, Yang W, Huang L Y, Du J, Yang Y Z, Liu Y, He H Y, Zou Y L, Li X H, Wu F Y 2022 Proc. Natl. Acad. Sci. 119 e2214395119Google Scholar

    [46]

    Mueller G, Hinsch G W 1970 Nature 228 254Google Scholar

    [47]

    Chernyak Y B, Nussinov M D 1976 Nature 261 664Google Scholar

    [48]

    Pugh M J 1972 Nature 237 158Google Scholar

    [49]

    Bastin J A 1980 Nature 283 108

    [50]

    Delano J W 1986 J. Geophys. Res. Solid Earth 91 201Google Scholar

    [51]

    Zeigler R A, Korotev R L, Jolliff B L, Haskin L A, Floss C 2006 Geochim. Cosmochim. Acta 70 6050Google Scholar

    [52]

    Tsuchiyama A, Sakurama T, Nakano T, Uesugi K, Ohtake M, Matsushima T, Terakado K, Galimov E M 2022 Earth Planets Space 74 172Google Scholar

    [53]

    Yan W, Richard I, Kurtuldu G, James N D, Schiavone G, Squair J W, Nguyen‐Dang T, Das Gupta T, Qu Y, Cao J D, Ignatans R, Lacour S P, Tileli V, Courtine G, Löffler J F, Sorin F 2020 Nat. Nanotechnol. 15 875Google Scholar

    [54]

    Naser M Z 2019 Prog. Mater. Sci. 105 100577Google Scholar

    [55]

    Guo Z S, Xing D, Xi X Y, Yue X, Liang C G, Hao B, Zheng Q B, Gutnikov S I, Lazoryak B I, Ma P C 2022 Adv. Fiber. Mater. 4 923Google Scholar

    [56]

    Housley R M, Grant R W, Paton N E 1973 Geochim. Cosmoschim. Acta 3 2737

    [57]

    Nakamura E, Makishima A, Moriguti T, Kobayashi K, Tanaka R, Kunihiro T, Tsujimori T, Sakaguchi C, Kitagawa H, Ota T, Yachi Y, Yada T, Abe M, Fujimura A, Ueno M, Mukai T, Yoshikawa M, Kawaguchi J I 2012 Proc. Natl. Acad. Sci. 109 E624Google Scholar

    [58]

    Hörz F, Brownlee D E, Fechtig H, Hartung J B, Morrison D A, Neukum G, Schneider E, Vedder J F, Gault D E 1975 Planet. Space Sci. 23 151Google Scholar

    [59]

    Morrison D A, Clanton U S 1979 Proc. Lunar Planet. Sci. Conf. 10 1649

    [60]

    Pieters C M, Ammannito E, Blewett D T, Denevi B W, De Sanctis M C, Gaffey M J, Le Corre L, Li J Y, Marchi S, McCord T B, McFadden L A, Mittlefehldt D W, Nathues A, Palmer E, Reddy V, Raymond C A, Russell C T 2012 Nature 491 79Google Scholar

    [61]

    Matsumoto T, Hasegawa S, Nakao S, Sakai M, Yurimoto H 2018 Icarus 303 22Google Scholar

    [62]

    Keller L P, McKay D S 1997 Geochim. Cosmochim. Acta 61 2331Google Scholar

    [63]

    Sasaki S, Nakamura K, Hamabe Y, Kurahashi E, Hiroi T 2001 Nature 410 555Google Scholar

    [64]

    Keller L P, McKay D S 1993 Science 261 1305Google Scholar

    [65]

    Hapke B, Cassidy W, Wells E 1975 The Moon 13 339Google Scholar

    [66]

    Taylor L A, Pieters C, Keller L P, Morris R V, McKAY D S, Patchen A, Wentworth S 2001 Meteorit. Planet. Sci. 36 285Google Scholar

    [67]

    Weber I, Stojic A N, Morlok A, Reitze M P, Markus K, Hiesinger H, Pavlov S G, Wirth R, Schreiber A, Sohn M, Hübers H W, Helbert J 2020 Earth Planet. Sci. Lett. 530 115884Google Scholar

    [68]

    McCord T B, Taylor L A, Combe J P, Kramer G, Pieters C M, Sunshine J M, Clark R N 2011 J. Geophys. Res. Planets 116 E00G05Google Scholar

    [69]

    Jia M N, Yue Z Y, Di K C, Liu B, Liu J Z, Michael G 2020 Earth Planet. Sci. Lett. 541 116272Google Scholar

    [70]

    Yang Y Z, Li S, Zhu M H, Liu Y, Wu B, Du J, Fa W Z, Xu R, He Z P, Wang C, Xue B, Yang J F, Zou Y L 2022 Nat. Astron. 6 207Google Scholar

    [71]

    Barnes J J, Kring D A, Tartese R, Franchi I A, Anand M, Russell S S 2016 Nat. Commun. 7 11684Google Scholar

    [72]

    Le Bars M, Wieczorek M A, Karatekin Ö, Cébron D, Laneuville M 2011 Nature 479 215Google Scholar

    [73]

    Chapman C R 2004 Annu. Rev. Earth Planet. Sci. 32 539Google Scholar

    [74]

    Lucey P G, Riner M A 2011 Icarus 212 451Google Scholar

    [75]

    Hiroi T, Abe M, Kitazato K, Abe S, Clark B E, Sasaki S, Ishiguro M, Barnouin-Jha O S 2006 Nature 443 56Google Scholar

    [76]

    Vernazza P, Binzel R P, Rossi A, Fulchignoni M, Birlan M 2009 Nature 458 993Google Scholar

    [77]

    Tai Udovicic C J, Costello E S, Ghent R R, Edwards C S 2021 Geophys. Res. Lett. 48 e2020GL092198Google Scholar

    [78]

    Bindi L, Shim S H, Sharp T G, Xie X D 2020 Sci. Adv. 6 eaay7893Google Scholar

    [79]

    Guo Z, Li Y, Liu S, Xu H F, Xie Z D, Li S J, Li X Y, Lin Y T, Coulson I M, Zhang M M 2020 Geochim. Cosmochim. Acta 272 276Google Scholar

    [80]

    Guo Z, Li Y, Chen H Y, Zhang M M, Wu Y X, Hui B, Liu S, Coulson I M, Li S J, Li X Y, Liu J Z, Ouyang Z Y 2021 J. Geophys. Res. Planets 126 e2020JE006816Google Scholar

    [81]

    Asimow P D, Langmuir C H 2003 Nature 421 815Google Scholar

    [82]

    Lin Y H, Tronche E J, Steenstra E S, van Westrenen W 2017 Nat. Geosci. 10 14Google Scholar

    [83]

    Hirth G, Kohlstedt D L 1996 Earth Planet. Sci. Lett. 144 93Google Scholar

    [84]

    Gaetani G A, Grove T L 1998 Contrib. Mineral. Petr. 131 323Google Scholar

    [85]

    Chaussidon M 2008 Nature 454 171Google Scholar

    [86]

    Wittenberg L J, Santarius J F, Kulcinski G L 1986 Fusion Technol. 10 167Google Scholar

    [87]

    Starukhina L V 2006 Adv. Space Res. 37 50Google Scholar

    [88]

    Lucey P G 2009 Science 326 531Google Scholar

    [89]

    Clark R N 2009 Science 326 562Google Scholar

    [90]

    Pieters C M, Goswami J N, Clark R N, et al. 2009 Science 326 568Google Scholar

    [91]

    Sunshine J M, Farnham T L, Feaga L M, Groussin O, Merlin F, Milliken R E, A’Hearn M F 2009 Science 326 565Google Scholar

    [92]

    Colaprete A, Schultz P, Heldmann J, et al. 2010 Science 330 463Google Scholar

    [93]

    Woehler C, Grumpe A, Berezhnoy A A, Shevchenko V V 2017 Sci. Adv. 3 e1701286Google Scholar

    [94]

    Farrell W M, Hurley D M, Zimmerman M I 2015 Icarus 255 116Google Scholar

    [95]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [96]

    Zhao J, Simon S L, McKenna G B 2013 Nat. Commun. 4 1783Google Scholar

  • [1] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [2] Yu Hai-Bin, Yang Qun. Ultrastable glasses. Acta Physica Sinica, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [3] Chen Ke. Applications of colloids in glass researches. Acta Physica Sinica, 2017, 66(17): 178201. doi: 10.7498/aps.66.178201
    [4] Li Yong-Jin, Song Zhi-Guo, Li Chen, Wan Rong-Hua, Qiu Jian-Bei, Yang Zheng-Wen, Yin Zhao-Yi, Wang Xue, Wang Qi, Zhou Da-Cheng, Yang Yong. Effects of sefl-reduction of glass matrix on the broadband near infrared emissions from Bi-doped alkali earth aluminoborosilicate glasses. Acta Physica Sinica, 2013, 62(11): 117801. doi: 10.7498/aps.62.117801
    [5] Wang Xue-Jun, Xia Hai-Ping. Study of near infrared emission property of GeO2-Bi2O3-MOx(MOx=WO3, BaO) glasses. Acta Physica Sinica, 2007, 56(5): 2725-2730. doi: 10.7498/aps.56.2725
    [6] Zhu Cai-Zhen, Zhang Pei-Xin, Xu Qi-Ming, Liu Jian-Hong, Ren Xiang-Zhong, Zhang Qian-Ling, Hong Wei-Liang, Li Lin-Lin. Molecular dynamics study the effect of the ratio Ca/Al on CaO-Al2O3-SiO2 structure. Acta Physica Sinica, 2006, 55(9): 4795-4802. doi: 10.7498/aps.55.4795
    [7] Gao Si-Jian, Ouyang Shi-Xi. Dielectric behavior in electric meltingquartz glass irradiated by γray. Acta Physica Sinica, 2003, 52(5): 1292-1296. doi: 10.7498/aps.52.1292
    [8] Xi Yan-Gang, Hou Zhan-Jia, Liu Li-Ying, Xu Lei, Wang Wen-Cheng. . Acta Physica Sinica, 2002, 51(6): 1295-1299. doi: 10.7498/aps.51.1295
    [9] CHEN DAN-PING, JIANG XIONG-WEI, ZHU CONG-SHAN. STUDY ON THE THERMOCHROMIC PROPERTIES OF Bi2O3-Li2O GLASSES. Acta Physica Sinica, 2001, 50(8): 1501-1506. doi: 10.7498/aps.50.1501
    [10] QIU JIAN-RONG, JIANG XIONG-WEI, ZHU CONG-SHAN, GAN FU-XI. ESR STUDIES AND THRESHOLDS OF FEMTOSECOND LASER INDUCED DARKENING IN GLASSES. Acta Physica Sinica, 2001, 50(5): 871-874. doi: 10.7498/aps.50.871
    [11] LI FENG-YING, FU SHUN-SHENG, WANG RU-JU, M.H.MANGHNANI. ELASTIC PROPERTIES OF FLOAT GLASS AND SiO2+TiO2 GLASS UNDER HIGH PRESSURE. Acta Physica Sinica, 2000, 49(11): 2129-2132. doi: 10.7498/aps.49.2129
    [12] XU ZHI-LING, YANG PENG, LIU LI-YING, HOU ZHAN-JIA, XU LEI, WANG WEN-CHENG. INFLUENCE OF BOUND CHARGE ON THE SECOND-ORDER OPTICAL NONLINEARITY OF GLASS. Acta Physica Sinica, 2000, 49(8): 1503-1506. doi: 10.7498/aps.49.1503
    [13] WANG YANG-PU, JIN QI-SHU. THE THEORY OF ULTRASONIC ATTENUATION IN SUPERIONIC GLASSES. Acta Physica Sinica, 1988, 37(7): 1083-1088. doi: 10.7498/aps.37.1083
    [14] CAO ZHONG-SHENG, ZHAO ZHONG-XIAN, FENG BEN-ZHENG. RESISTIVITY OF METALLIC GLASS CuTi. Acta Physica Sinica, 1985, 34(5): 652-662. doi: 10.7498/aps.34.652
    [15] FAU XI-QING, WANG GUO-LIANG, JIANG WANG-YE, DAI PEI-YING, LIU FU-SUI. INFRARED DIVERGENCE THEORY OF ULTRASONIC ABSORPTION IN GLASSES. Acta Physica Sinica, 1985, 34(10): 1270-1279. doi: 10.7498/aps.34.1270
    [16] LUO YUAN-SU, ZAO JI-LIANG, HUANG SHENG-TAO. AN INVESTIGATION ON THE STRUCTURE OF GLASSY METALS BY X-RAY DIFFRACTION METHOD. Acta Physica Sinica, 1982, 31(9): 1256-1262. doi: 10.7498/aps.31.1256
    [17] CHENG KE-HUA. THE IMAGING OF A GLASS SELF-FOCUING PLATE. Acta Physica Sinica, 1981, 30(1): 66-73. doi: 10.7498/aps.30.66
    [18] CHEN SHU-CHUN, QI CHANG-HONG, DAI FENG-MEI. SPECTRAL PROPERTIES OF Nd3+ IN GLASS. Acta Physica Sinica, 1980, 29(1): 54-63. doi: 10.7498/aps.29.54
    [19] RESEARCH GROUP OF THERMAL DISTORTIONS IN ND-DOPED GLASSES. THERMAL DISTORTION INDUCED BY OPTICAL PUMPING IN Nd-GLASS. Acta Physica Sinica, 1978, 27(1): 22-30. doi: 10.7498/aps.27.22
    [20] . Acta Physica Sinica, 1975, 24(5): 366-371. doi: 10.7498/aps.24.366
Metrics
  • Abstract views:  3629
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2023
  • Accepted Date:  22 August 2023
  • Available Online:  12 September 2023
  • Published Online:  05 December 2023

/

返回文章
返回