Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phononic thermal conduction and thermal regulation in low-dimensional micro-nano scale systems: Nonequilibrium statistical physics problems from chip heat dissipation

Luo Tian-Lin Ding Ya-Fei Wei Bao-Jie Du Jian-Ying Shen Xiang-Ying Zhu Gui-Mei Li Bao-Wen

Citation:

Phononic thermal conduction and thermal regulation in low-dimensional micro-nano scale systems: Nonequilibrium statistical physics problems from chip heat dissipation

Luo Tian-Lin, Ding Ya-Fei, Wei Bao-Jie, Du Jian-Ying, Shen Xiang-Ying, Zhu Gui-Mei, Li Bao-Wen
PDF
HTML
Get Citation
  • “Heat death”, namely, overheating, which will deteriorate the function of chips and eventually burn the device and has become an obstacle in the roadmap of the semiconductor industry. Therefore, heat dissipation becomes a key issue in further developing semiconductor. Heat conduction in chips encompasses the intricate dynamics of phonon conduction within one-dimensional, two-dimensional materials, as well as the intricate phonon transport through interfaces. In this paper, the research progress of the complexities of phonon transport on a nano and nanoscale in recent three years, especially the size dependent phonon thermal transport and the relationship between anomalous heat conduction and anomalous diffusion are summarized. Further discussed in this paper is the fundamental question within non-equilibrium statistical physics, particularly the necessary and sufficient condition for a given Hamiltonian whose macroscopic transport behavior obeys Fourier’s law. On the other hand, the methods of engineering the thermal conduction, encompassing nanophononic crystals, nanometamaterials, interfacial phenomena, and phonon condensation are also introduced. In order to comprehensively understand the phononic thermal conduction, a succinct overview of phonon heat transport phenomena, spanning from thermal quantization and the phonon Hall effect to the chiral phonons and their intricate interactions with other carriers is presented. Finally, the challenges and opportunities, and the potential application of phonons in quantum information are also discussed.
      Corresponding author: Shen Xiang-Ying, shenxy@sustech.edu.cn ; Zhu Gui-Mei, zhugm@sustech.edu.cn ; Li Bao-Wen, libw@sustech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52250191, 12205138) and the Shenzhen Basic Research Genenal Project, China (Grant No. JCYJ20220530113206015).
    [1]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [2]

    Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [3]

    Harper C 2004 Electronic Packaging and Interconnection Handbook. (New York: McGraw-Hill, Inc

    [4]

    Muralidhar R, Borovica-Gajic R, Buyya R 2022 ACM Comput. Surv. 54 1

    [5]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [6]

    Zhang J, Yang X, Feng Y, Li Y, Wang M, Shen J, Wei L, Liu D, Wu S, Cai Z, Xu F, Wang X, Ge W, Shen B 2020 Phys. Rev. Mater. 4 073402Google Scholar

    [7]

    Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N, Zhang G 2020 Phys. Rep. 860 1Google Scholar

    [8]

    Li B, Wang J 2003 Phys. Rev. Lett. 91 044301Google Scholar

    [9]

    Xu X, Chen J, Li B 2016 J. Phys. : Condens. Matter 28 483001Google Scholar

    [10]

    Yu Y F, Minhaj T, Huang L J, Yu Y L, Cao L Y 2020 Phys. Rev. Appl. 13 034059Google Scholar

    [11]

    Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Cong Tinh B, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B, Oezyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [12]

    Yang N, Xu X, Zhang G, Li B 2012 AIP Adv. 2 041410Google Scholar

    [13]

    Kaburaki H, Machida M 1993 Phys. Lett. A 181 85Google Scholar

    [14]

    Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896Google Scholar

    [15]

    Hu B, Li B, Zhao H 1998 Phys. Rev. E 57 2992Google Scholar

    [16]

    Zhang G, Li B 2005 J. Chem. Phys. 123 114714Google Scholar

    [17]

    Yang N, Zhang G, Li B W 2010 Nano Today 5 85Google Scholar

    [18]

    Liu J, Yang R 2012 Phys. Rev. B 86 104307Google Scholar

    [19]

    Maruyama S 2002 Physica B Condens. Matter 323 193Google Scholar

    [20]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502Google Scholar

    [21]

    Shen S, Henry A, Tong J, Zheng R, Chen G 2010 Nat Nanotechnol 5 251Google Scholar

    [22]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2008 Phys. Rev. Lett. 101 075903Google Scholar

    [23]

    Lee V, Wu C H, Lou Z X, Lee W L, Chang C W 2017 Phys. Rev. Lett. 118 135901Google Scholar

    [24]

    Yang L, Tao Y, Zhu Y, Akter M, Wang K, Pan Z, Zhao Y, Zhang Q, Xu Y Q, Chen R, Xu T T, Chen Y, Mao Z, Li D 2021 Nat Nanotechnol 16 764Google Scholar

    [25]

    Yao F, Xia S, Wei H, Zheng J, Yuan Z, Wang Y, Huang B, Li D, Lu H, Xu D 2022 Nano Lett. 22 6888Google Scholar

    [26]

    Rieder Z, Lebowitz J L, Lieb E 2004 J. Math. Phys. 8 1073Google Scholar

    [27]

    Payton D N, Rich M, Visscher W M 1967 Phy. Rev. 160 706Google Scholar

    [28]

    Liu S, Hänggi P, Li N, Ren J, Li B 2014 Phys. Rev. Lett. 112 040601Google Scholar

    [29]

    Li S-N, Cao B-Y 2020 Appl. Math. Lett. 99 105992Google Scholar

    [30]

    Parisi G 1997 Europhys. Lett. 40 357Google Scholar

    [31]

    Eckmann J P, Hairer M 2000 Commun. Math. Phys. 212 105Google Scholar

    [32]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Studies of the Nonlinear Problems; Los Alamos National Lab. (LANL), Los Alamos, NM (United States): 1955.

    [33]

    Berman G P, Izrailev F M 2005 Chaos:An Interdisciplinary Journal of Nonlinear Science 15 015104Google Scholar

    [34]

    Wang Z, Fu W, Zhang Y, Zhao H 2020 Phys. Rev. Lett. 124 186401Google Scholar

    [35]

    Fu W, Zhang Y, Zhao H 2019 Phys. Rev. E 100 052102Google Scholar

    [36]

    Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [37]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [38]

    Gu X, Wei Y, Yin X, Li B, Yang R 2018 Rev. Mod. Phys. 90 041002Google Scholar

    [39]

    Lippi A, Livi R 2000 J. Stat. Phys. 100 1147Google Scholar

    [40]

    Yang L, Grassberger P, Hu B 2006 Phys. Rev. E 74 062101Google Scholar

    [41]

    Wang L, Hu B, Li B 2012 Phys. Rev. E 86 040101Google Scholar

    [42]

    Gu X K, Yang R G 2014 Appl. Phys. Lett. 105 131903Google Scholar

    [43]

    Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar

    [44]

    Tobey R a I, Siemens M E, Cohen O, Murnane M M, Kapteyn H C, Nelson K A 2007 Opt. Lett. 32 286Google Scholar

    [45]

    McBennett B, Beardo A, Nelson E E, Abad B, Frazer T D, Adak A, Esashi Y, Li B, Kapteyn H C, Murnane M M, Knobloch J L 2023 Nano Lett. 23 2129Google Scholar

    [46]

    Kollie T G 1977 Phys. Rev. B 16 4872Google Scholar

    [47]

    Beardo A, Knobloch J L, Sendra L, Bafaluy J, Frazer T D, Chao W, Hernandez-Charpak J N, Kapteyn H C, Abad B, Murnane M M, Alvarez F X, Camacho J 2021 ACS Nano 15 13019Google Scholar

    [48]

    Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford University Press

    [49]

    Karniadakis G, Beskok A, Aluru N 2006 Microflows and Nanoflows: Fundamentals and Simulation (New York: Springer Science & Business Media

    [50]

    Graczyk K M, Matyka M 2020 Sci. Rep. 10 21488Google Scholar

    [51]

    Verdier M, Lacroix D, Termentzidis K 2018 Phys. Rev. B 98 155434Google Scholar

    [52]

    Desmarchelier P, Beardo A, Alvarez F X, Tanguy A, Termentzidis K 2022 Int. J. Heat Mass Transfer 194 123003Google Scholar

    [53]

    Lysenko V, Perichon S, Remaki B, Barbier D, Champagnon B 1999 J. Appl. Phys. 86 6841Google Scholar

    [54]

    Ferrando-Villalba P, D’Ortenzi L, Dalkiranis G G, Cara E, Lopeandia A F, Abad L, Rurali R, Cartoixà X, De Leo N, Saghi Z, Jacob M, Gambacorti N, Boarino L, Rodríguez-Viejo J 2018 Sci. Rep. 8 12796Google Scholar

    [55]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [56]

    Zhang Z, Ouyang Y, Guo Y, Nakayama T, Nomura M, Volz S, Chen J 2020 Phys. Rev. B 102 195302Google Scholar

    [57]

    Jiang J, Lu S, Ouyang Y, Chen J 2022 Nanomaterials 12 2854Google Scholar

    [58]

    Li X, Lee S 2019 Phys. Rev. B 99 085202Google Scholar

    [59]

    Scuracchio P, Michel K H, Peeters F M 2019 Phys. Rev. B 99 144303Google Scholar

    [60]

    Lee S, Broido D, Esfarjani K, Chen G 2015 Nat. Commun. 6 6290Google Scholar

    [61]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [62]

    Carr S, Massatt D, Fang S, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420Google Scholar

    [63]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 12233Google Scholar

    [64]

    Cocemasov A I, Nika D L, Balandin A A 2013 Phys. Rev. B 88 035428Google Scholar

    [65]

    Li H, Ying H, Chen X, Nika D L, Cocemasov A I, Cai W, Balandin A A, Chen S 2014 Nanoscale 6 13402Google Scholar

    [66]

    Han S, Nie X, Gu S, Liu W, Chen L, Ying H, Wang L, Cheng Z, Zhao L, Chen S 2021 Appl. Phys. Lett. 118 193104Google Scholar

    [67]

    Di Battista G, Seifert P, Watanabe K, Taniguchi T, Fong K C, Principi A, Efetov D K 2022 Nano Lett. 22 6465Google Scholar

    [68]

    Nie X, Zhao L, Deng S, Zhang Y, Du Z 2019 Int. J. Heat Mass Transfer 137 161Google Scholar

    [69]

    Li C, Debnath B, Tan X, Su S, Xu K, Ge S, Neupane M R, Lake R K 2018 Carbon 138 451Google Scholar

    [70]

    Wang M H, Xie Y E, Chen Y P 2017 Chin. Phys. B 26 116503Google Scholar

    [71]

    Cheng Y, Fan Z, Zhang T, Nomura M, Volz S, Zhu G, Li B, Xiong S 2023 Mater. Today Phys. 35 101093Google Scholar

    [72]

    Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C-H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar

    [73]

    Ni Y, Volz S 2021 J. Appl. Phys. 130 190901Google Scholar

    [74]

    Shao C, Rong Q, Li N, Bao H 2018 Phys. Rev. B 98 155418Google Scholar

    [75]

    Sun L, Zhai F, Cao Z, Huang X, Guo C, Wang H, Ni Y 2023 Chin. Phys. B 32 056301Google Scholar

    [76]

    Wang Y, Huang H, Ruan X 2014 Phys. Rev. B 90 165406Google Scholar

    [77]

    Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P, Ruan X 2020 Nano Energy 69 104428Google Scholar

    [78]

    Honarvar H, Hussein M I 2018 Phys. Rev. B 97 195413Google Scholar

    [79]

    Kothari K, Maldovan M 2017 Sci. Rep. 7 5625Google Scholar

    [80]

    Maldovan M 2013 Nature 503 209Google Scholar

    [81]

    Li B, Tan K T, Christensen J 2017 Phys. Rev. B 95 144305Google Scholar

    [82]

    Costescu R, Cahill D, Fabreguette F, Sechrist Z, George S 2004 Science 303 989Google Scholar

    [83]

    Anufriev R, Yanagisawa R, Nomura M 2017 Nanoscale 9 15083Google Scholar

    [84]

    Anufriev R, Maire J, Nomura M 2021 APL Mater. 9 070701Google Scholar

    [85]

    Anufriev R, Gluchko S, Volz S, Nomura M 2018 ACS Nano 12 11928Google Scholar

    [86]

    Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S, Nomura M 2017 Sci. Adv. 3 e1700027Google Scholar

    [87]

    Wang H, Cheng Y, Fan Z, Guo Y, Zhang Z, Bescond M, Nomura M, Ala-Nissila T, Volz S, Xiong S 2021 Nanoscale 13 10010Google Scholar

    [88]

    Yang L, Chen J, Yang N, Li B 2015 Int. J. Heat Mass Transfer 91 428Google Scholar

    [89]

    Zen N, Puurtinen T A, Isotalo T J, Chaudhuri S, Maasilta I J 2014 Nat. Commun. 5 3435Google Scholar

    [90]

    Yang L, Yang N, Li B 2013 Sci. Rep. 3 1143Google Scholar

    [91]

    Yang L, Yang N, Li B 2014 Nano Lett. 14 1734Google Scholar

    [92]

    Moore A L, Saha S K, Prasher R S, Shi L 2008 Appl. Phys. Lett. 93 083112Google Scholar

    [93]

    Martin P, Aksamija Z, Pop E, Ravaioli U 2009 Phys. Rev. Lett. 102 125503Google Scholar

    [94]

    Maurer L N, Aksamija Z, Ramayya E B, Davoody A H, Knezevic I 2015 Appl. Phys. Lett. 106 133108Google Scholar

    [95]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121Google Scholar

    [96]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [97]

    Lim J, Hippalgaonkar K, Andrews S C, Majumdar A, Yang P 2012 Nano Lett. 12 2475Google Scholar

    [98]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar

    [99]

    Algra R E, Verheijen M A, Borgström M T, Feiner L F, Immink G, van Enckevort W J P, Vlieg E, Bakkers E P A M 2008 Nature 456 369Google Scholar

    [100]

    Li X, Bohn P W 2000 Appl. Phys. Lett. 77 2572Google Scholar

    [101]

    Canham L 2014 Handbook of Porous Silicon (Berlin: Springer International Publishing

    [102]

    Lee J H, Galli G A, Grossman J C 2008 Nano Lett. 8 3750Google Scholar

    [103]

    Ma J, Sadhu J, Ganta D, Tian H, Sinha S 2014 AIP Adv. 4 124502Google Scholar

    [104]

    Gesele G, Linsmeier J, Drach V, Fricke J, Arens-Fischer R 1997 J. Phys. D: Appl. Phys. 30 2911Google Scholar

    [105]

    Zhang G, Li B 2010 Nanoscale 2 1058Google Scholar

    [106]

    Zhao Y, Liu D, Chen J, Zhu L, Belianinov A, Ovchinnikova O S, Unocic R R, Burch M J, Kim S, Hao H, Pickard D S, Li B, Thong J T L 2017 Nat. Commun. 8 15919Google Scholar

    [107]

    Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X, Li B 2018 Nanoscale 10 2727Google Scholar

    [108]

    Chen J, Zhang G, Li B 2009 Appl. Phys. Lett. 95 073117Google Scholar

    [109]

    Yang N, Zhang G, Li B 2008 Nano Lett. 8 276Google Scholar

    [110]

    Chang C W, Fennimore A M, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A, Zettl A 2006 Phys. Rev. Lett. 97 085901Google Scholar

    [111]

    Yang J, Waltermire S, Chen Y, Zinn A A, Xu T T, Li D 2010 Appl. Phys. Lett. 96 023109Google Scholar

    [112]

    Khalatnikov I 1952 Zh. Eksperim. i Teor. Fiz 23 169

    [113]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [114]

    Young D A, Maris H J 1989 Phys. Rev. B 40 3685Google Scholar

    [115]

    Wang J S, Wang J, Zeng N 2006 Phys. Rev. B 74 033408Google Scholar

    [116]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Commun. 102 517Google Scholar

    [117]

    Yang H, Zhang Z, Zhang J, Zeng X C 2018 Nanoscale 10 19092Google Scholar

    [118]

    Behler J 2016 The Journal of Chemical Physics 145 170901Google Scholar

    [119]

    Zubatiuk T, Isayev O 2021 Acc. Chem. Res. 54 1575Google Scholar

    [120]

    Wu Y-J, Fang L, Xu Y 2019 npj Comput. Mater. 5 56Google Scholar

    [121]

    Jin S, Zhang Z, Guo Y, Chen J, Nomura M, Volz S 2022 Int. J. Heat Mass Transfer 182 122014Google Scholar

    [122]

    Ouyang Y, Yu C, He J, Jiang P, Ren W, Chen J 2022 Phys. Rev. B 105 115202Google Scholar

    [123]

    Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B, Thong J T 2011 Nano Lett. 11 113Google Scholar

    [124]

    Cahill D G 2004 Rev. Sci. Instrum. 75 5119Google Scholar

    [125]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802Google Scholar

    [126]

    Liu D, Xie R, Yang N, Li B, Thong J T L 2014 Nano Lett. 14 806Google Scholar

    [127]

    Sun F, Wang X, Yang M, Chen Z, Zhang H, Tang D 2017 Int. J. Thermophys. 39 5Google Scholar

    [128]

    Giri A, Gaskins J T, Li L, Wang Y-S, Prezhdo O V, Hopkins P E 2019 Phys. Rev. B 99 165139Google Scholar

    [129]

    Foley B M, Hernández S C, Duda J C, Robinson J T, Walton S G, Hopkins P E 2015 Nano Lett. 15 4876Google Scholar

    [130]

    Hopkins P E, Norris P M, Tsegaye M S, Ghosh A W 2009 J. Appl. Phys. 106 023710Google Scholar

    [131]

    Li X, Yang R 2012 Phys. Rev. B 86 054305Google Scholar

    [132]

    Hohensee G T, Wilson R B, Cahill D G 2015 Nat. Commun. 6 6578Google Scholar

    [133]

    Wilson R B, Apgar B A, Hsieh W-P, Martin L W, Cahill D G 2015 Phys. Rev. B 91 115414Google Scholar

    [134]

    Zhong J, Xi Q, Wang Z, Nakayama T, Li X, Liu J, Zhou J 2021 J. Appl. Phys. 129 195102Google Scholar

    [135]

    Pollack G L 1969 Rev. Mod. Phys. 41 48Google Scholar

    [136]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [137]

    Li B, Lan J, Wang L 2005 Phys. Rev. Lett. 95 104302Google Scholar

    [138]

    Ding Y F, Zhu G M, Shen X Y, Bai X, Li B W 2022 Chin. Phys. B 31 126301Google Scholar

    [139]

    Liu D 2014 Ph. D Theses (Singapore: National University of Singapore

    [140]

    Yang N, Li N, Wang L, Li B 2007 Phys. Rev. B 76 020301Google Scholar

    [141]

    Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [142]

    Ma D, Zhao Y, Zhang L 2021 J. Appl. Phys. 129 175302Google Scholar

    [143]

    Fröhlich H 1968 Int. J. Quantum Chem. 2 641Google Scholar

    [144]

    Nardecchia I, Torres J, Lechelon M, Giliberti V, Ortolani M, Nouvel P, Gori M, Meriguet Y, Donato I, Preto J, Varani L, Sturgis J, Pettini M 2018 Phys. Rev. X 8 031061Google Scholar

    [145]

    Zhang Z, Agarwal G S, Scully M O 2019 Phys. Rev. Lett. 122 158101Google Scholar

    [146]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [147]

    Zheng X, Li B 2021 Physical Review A 104 043512Google Scholar

    [148]

    Zheng X, Li B 2022 arXiv preprint arXiv: 2201.00251

    [149]

    Pettit R, Ge W, Kumar P, Luntz-Martin D, Schultz J, Neukirch L, Bhattacharya M, Vamivakas A 2019 Nat. Photonics 13 1Google Scholar

    [150]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232Google Scholar

    [151]

    Rego L G C, Kirczenow G 1999 Phys. Rev. B 59 13080Google Scholar

    [152]

    Schwab K, Henriksen E A, Worlock J M, Roukes M L 2000 Nature 404 974Google Scholar

    [153]

    Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306Google Scholar

    [154]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422Google Scholar

    [155]

    Peng X F, Chen K Q, Wan Q, Zou B, Duan W 2010 Phys. Rev. B 81 195317Google Scholar

    [156]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105Google Scholar

    [157]

    Huang L, Chen S Z, Zeng Y J, Wu D, Li B L, Feng Y X, Fan Z Q, Tang L M, Chen K Q 2020 Adv. Electron. Mater. 6 2000689Google Scholar

    [158]

    王子, 张丹妹, 任捷 2019 物理学报 68 220302Google Scholar

    Wang Z, Zhang D M, Ren J 2019 Acta Phys. Sin. 68 220302Google Scholar

    [159]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [160]

    Jaworski C, Yang J, Mack S, Awschalom D, Heremans J, Myers R 2010 Nat. Mater. 9 898Google Scholar

    [161]

    Ren J 2013 Phys. Rev. B 88 220406Google Scholar

    [162]

    Flipse J, Dejene F K, Wagenaar D, Bauer G E W, Youssef J B, van Wees B J 2014 Phys. Rev. Lett. 113 027601Google Scholar

    [163]

    Zhang L, Wang J S, Li B 2010 Phys. Rev. B 81 100301Google Scholar

    [164]

    Pan H, Tang L M, Chen K Q 2022 Phys. Rev. B 105 064401Google Scholar

    [165]

    邢玉恒, 徐锡方, 张力发 2017 物理学报 22 226601Google Scholar

    Xing Y H, Xu X F, Zhang L F 2017 Acta Phys. Sin. 22 226601Google Scholar

    [166]

    Hentrich R, Roslova M, Isaeva A, Doert T, Brenig W, Büchner B, Hess C 2019 Phys. Rev. B 99 085136Google Scholar

    [167]

    Yang Y F, Zhang G M, Zhang F C 2020 Phys. Rev. Lett. 124 186602Google Scholar

    [168]

    Akazawa M, Shimozawa M, Kittaka S, Sakakibara T, Okuma R, Hiroi Z, Lee H Y, Kawashima N, Han J H, Yamashita M 2020 Phys. Rev. X 10 041059Google Scholar

    [169]

    Zhang L, Ren J, Wang J S, Li B 2010 Phys. Rev. Lett. 105 225901Google Scholar

    [170]

    Saito T, Misaki K, Ishizuka H, Nagaosa N 2019 Phys. Rev. Lett. 123 255901Google Scholar

    [171]

    Zhang L, Niu Q 2014 Phys. Rev. Lett. 112 085503Google Scholar

    [172]

    Zhang L, Niu Q 2015 Phys. Rev. Lett. 115 115502Google Scholar

    [173]

    Zhu H, Yi J, Li M Y, Xiao J, Zhang L, Yang C W, Kaindl R A, Li L J, Wang Y, Zhang X 2018 Science 359 579Google Scholar

    [174]

    Chen H, Wu W, Yang S A, Li X, Zhang L 2019 Phys. Rev. B 100 094303Google Scholar

    [175]

    Gao M, Zhang W, Zhang L 2018 Nano Lett. 18 4424Google Scholar

    [176]

    Chen X, Lu X, Dubey S, Yao Q, Liu S, Wang X, Xiong Q, Zhang L, Srivastava A 2019 Nat. Phys. 15 221Google Scholar

    [177]

    Chen H, Wu W, Zhu J, Yang Z, Gong W, Gao W, Yang S A, Zhang L 2022 Nano Lett. 22 1688Google Scholar

    [178]

    Kim K, Vetter E, Yan L, Yang C, Wang Z, Sun R, Yang Y, Comstock A H, Li X, Zhou J 2023 Nat. Mater. 22 322Google Scholar

    [179]

    Narayan O, Ramaswamy S 2002 Phys. Rev. Lett. 89 200601Google Scholar

    [180]

    Pereverzev A 2003 Phys. Rev. E 68 056124Google Scholar

    [181]

    Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432Google Scholar

    [182]

    Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N 2015 Nat. Commun. 6 6400Google Scholar

    [183]

    Huberman S, Duncan R A, Chen K, Song B, Chiloyan V, Ding Z, Maznev A A, Chen G, Nelson K A 2019 Science 364 375Google Scholar

    [184]

    Shang M Y, Mao W H, Yang N, Li B, Lü J T 2022 Phys. Rev. B 105 165423Google Scholar

    [185]

    Yu C, Shan S, Lu S, Zhang Z, Chen J 2023 Phys. Rev. B 107 165424Google Scholar

  • 图 1  微处理器过去半个世纪的发展趋势. 晶体管数目, 单线程性能, 工作频率, 核心数, 热流密度(红色虚线)随时间的变化趋势[4]

    Figure 1.  Microprocessor trend data during 1972–2020. Transistor (kilo unites), single-thread performance (SpecINT × 10³) frequency (MHz), typical power (Watts), number of logical cores, density of heat flow (W/cm2)[4].

    图 2  热界面材料的应用场景

    Figure 2.  Application scenario of thermal interface materials.

    图 3  芯片涉及的热传导过程 (a) 芯片安装的宏观结构; (b) 热界面材料填充热沉与热源的示意图和温度分布; (c) 通过材料工程优化芯片内部结构[6]; (d) Si衬底GaN基电子器件的多层结构示意图

    Figure 3.  Heat conduction of the computer chip: (a) Schematic diagram of chip packaging; (b) schematic diagram and temperature profile for an interface composed of two dissimilar segments; (c) optimize the structure of the chip by material engineering[6]; (d) schematic diagram of the multilayer structure inside a GaN based electronic device chip on Si substrate.

    图 4  一维体系热导率发散的理论研究 (a) 当非线性参数$ \beta =1.5 $时, 一维原子链的热导率随体系尺寸N的变化关系[13]; (b) 基于不同模型时(FPU-$ \beta $模型, 不同参数的FK模型)$ JN $随原子链长度的变化关系[15]; (c) 不同的单璧碳纳米管热导率随尺寸的变化关系[16]; (d) 硅纳米线热导率随尺寸的变化关系[17]; (e) 单根高分子链热导率随长度发散的理论结果[18]

    Figure 4.  Diverged thermal conductivity in 1D systems: (a) Thermal conductivity $ \kappa $ for an FPU lattice with $ \beta =1.5 $ varies with the system size $ N $[13]; (b) $ JN $ vs. the number of particles $ N $ for different models ($ J $-heat flux) [15]; (c) the thermal conductivity vs. tube length L in log-log scale for different tubes at 300 and 800 K[16]; (d) thermal conductivity of SiNWs (with fixed transverse boundary condition) vs. longitude length $ L_z $[17]; (e) thermal conductivity of single extended polymer chains of five polymers as a function of chain length [18].

    图 5  碳纳米管和氮化硼纳米管热阻随尺寸的变化关系 (a) 归一化的热阻随长度的变化关系, 插图为扫描电镜下悬空热桥法的测试装置[22]; (b) 碳纳米管的归一化热阻随长度的变化关系(从热阻变化推断出热导率变化为$ \kappa \sim{L}^{0.6} $)[22]; (c) 氮化硼纳米管的归一化热阻随长度的发散关系(从而得到$ \kappa \sim{L}^{0.5} $)[22]

    Figure 5.  Normalized thermal resistance vs . normalized sample length for different samples: (a) The relations between normalized thermal resistance and sample length for carbon nanotubes (CNTs) and boron-nitride nanotubes (BNNTs)[22]; (b) the relations between normalized thermal resistance and sample length for CNT[22]; (c) the relations between normalized thermal resistance and sample length for BNNTs[22].

    图 6  NbSe3纳米线和Si0.4Ge0.6薄膜中的超扩散现象 (a) NbSe3纳米线材料体系中的超扩散声子热输运实验发现[24]; (b) Si0.4Ge0.6 薄膜中的超扩散热输运[25]

    Figure 6.  Experimental evidence of superdiffusive behavior of thermal transport in aligned atomic chains and Si0.4Ge0.6 thin films: (a) Observation of superdiffusive phonon transport in NbSe3 nanowire[24]; (b) superdiffusive thermal transport in Si0.4Ge0.6 thin films[25]

    图 7  扩散与热传导之间的对应关系[8]

    Figure 7.  Connection between heat conduction and anomalous diffusion[8].

    图 8  扩散方程中的$ \alpha $与热传导方程中$ \beta $之间的关系[8]

    Figure 8.  Connection between anomalous diffusion and heat conduction[8].

    图 9  一些典型二维材料的热导率和平面结构[38]

    Figure 9.  Thermal conductivity and layer structure of some typical 2D materials[38].

    图 10  二维材料反常热输运的理论研究 (a) 基于FPU-β模型的二维晶格热导率随尺寸变化关系[41]; (b) 基于相互作用势为四次方模型的二维晶格热导率随尺寸变化关系[41]; (c) 基于不同计算方法得到的二硫化钼热导率随尺寸的变化关系[42]; (d) 石墨烯热导率随尺寸变化关系; (e) 硅烯热导率随尺寸变化关系[43]

    Figure 10.  Anomalous thermal transport in two-dimensional material. (a) κGK(N) in the X direction vs. N in NX ×NY lattices. FPU-β lattice. Inset: data plotted in double logarithmic scale. Solid line corresponds to N0.25[41]. (b) Purely quartic lattices[41]. (c) The calculated thermal conductivity of MoS2 at 300 K as a function of sample size[42]. (d) Length dependence of thermal conductivity of each phonon branch of graphene. (e) Length dependence of thermal conductivity of each phonon branch of silicene[43].

    图 11  二维材料热导率发散的实验研究 (a) 基于热桥法测量得到的悬空单层石墨烯热导率[11]; (b) 拉曼光热法得到的不同厚度MoS2热导率随尺寸的变化关系; (c) 拉曼光热法得到的不同材料二维材料热导率随尺寸的变化关系[10]

    Figure 11.  Thermal conductivity of 2D systems: (a) Experimental results on length-dependent thermal conductivity[11]; (b) thermal conductivity of suspended momolayer/bilayer/trilayer MoS2 obtained through Raman photothermal method as a function of sample size; (c) thermal conductivity of monolayer WS2 (red color) and WSe2 (orange color) obtained through Raman photothermal method as a function of sample size[10].

    图 12  在室温下观察到三维硅超晶格的超低热导率 (a) 实验设置示意图. 通过一个时间延迟的极紫外探测光束, 在超快红外激光泵浦脉冲激发后, 监测超晶格表面镍光栅的热弛豫[45]. (b) 超晶格结构的横截面电子显微镜图像. 约500 nm厚的超晶格薄膜由晶体硅组成, 其中穿插有36 nm周期性和约20 nm直径的FCC堆积孔隙, 导致孔隙率为0.385 ± 0.02[45]. (c) 傅里叶定律(虚线红色)预测值和实验得到的超低热导率数值(灰色). 插图显示了块体硅导热率(黑色)、体积缩减的有效介质理论Eucken & Russell导热率(蓝色)以及明显的超晶格热导率(红色), 后者仅为块体的1%[45]

    Figure 12.  Ultra-low thermal conductivity observed in three-dimensional silicon superlattices at room temperature. (a) Schematic diagram of the experimental setup. The thermal relaxation of the nickel grating on the superlattice surface is monitored after ultrafast infrared laser pump pulse excitation using a time-delayed extreme ultraviolet (EUV) probe beam[45]. (b) cross-sectional electron microscope image of the superlattice structure. The approximately 500-nm-thick superlattice film is composed of crystalline silicon with 36-nm periodic and approximately 20-nm diameter FCC-stacked pores, resulting in a porosity of 0.385 ± 0.02[45]. (c) Fourier’s law predicted values (dashed red line) and experimentally obtained ultra-low thermal conductivity values (gray). The inset shows the bulk silicon thermal conductivity (black), the volume-reduced Eucken & Russell thermal conductivity (blue), and the distinct superlattice thermal conductivity (red), the latter being only 1% of the bulk value[45].

    图 13  高度受限纳米体系中声子“黏度”(viscosity)与声子晶体孔隙率(porosity)的统一理论[45]

    Figure 13.  Unified theory of phonon “viscosity” and “porosity” in highly constrained nano-systems[45].

    图 14  (a) 双层旋转石墨烯面内振动, 垂直方向振动对热传导的贡献和总的热导率随旋转角的变化[71]; (b) 图(a)中(0°—5°)范围内放大的热导率变化[71]; (c) 不同温度下热导率与旋转角的依赖关系[71]; (d) 0°—5°转角下不同温度热导率随转角的变化关系[71]; (e) 双层旋转石墨烯形成的莫尔晶格(Moire)和AA, AB, SP堆积结构的原子位置. 红/蓝颜色的原子对应下层和上层的碳原子[71]

    Figure 14.  (a) Total, in-plane, and out-of-plane thermal conductivity of TBG varies as twist angle from 0° to 30° at 300 K[71]; (b) total thermal conductivity of TBG versus twist angle below 5°[71]; (c) total thermal conductivity of TBG versus with twist angle at temperatures 300, 400 and 500 K[71]; (d) normalized thermal conductivity with respect to the value of the untwisted structure as a function of twist angle at 300, 400 and 500 K[71]; (e) the Moiré lattice formed in TBG and the atomic arrangements of AA, AB, and SP stacks[71].

    图 15  布拉格反射型声子晶体重声子在声子晶体的运动行为 (a) 处于禁带内的声子穿过周期结构逐渐消失[72]; (b) 处于禁带外的声子能够穿过周期结构[72]

    Figure 15.  Travel behavior of phonons in phononic crystals: (a) Phonons within the bandgap gradually disappear as they pass through the periodic structure[72]; (b) phonons outside the bandgap are able to pass through the periodic structure[72].

    图 16  局域共振型声子晶体 (a) 相同材料下具有柱状结构的纳米声子晶体(红色)声子谱、群速度和没有柱状结构的膜(绿色)的声子谱、群速度的对比[78]; (b) 柱状分子纳米声子晶体的结构[78]

    Figure 16.  Phononic crystals with resonant cavities: (a) Comparison of phonon spectra and group velocities between nanophononic crystals with pillars (red) and membranes without pillars (green) made of the same material[78]; (b) structure of the nanophononic crystal with pillars[78].

    图 17  不同波长声子传递的信息[80]

    Figure 17.  Information transmission by phonons of different wavelengths[80].

    图 18  (a) 简化后的共振器模型[81]; (b) 四种不同类型的周期型结构(由上至下分别是打孔结构、翅形结构、柱形结构、材料掺杂结构), 以及四种结构的热导率与结构尺寸的变化关系[84]; (c) 不同共振器结构GNR的热导率[87]

    Figure 18.  (a) Simplified resonator model[81]; (b) four different types of periodic structures (from top to bottom: holes, wings, pillars, and material-doped structure), and the relationship between thermal conductivity and structural size for the four structures[84]; (c) thermal conductivity of different resonator structures in GNRs[87].

    图 19  二维石墨烯声子晶体的热导率随(a)温度, (b)周期长度的变化情况[88]; (c) 声子晶体在激光加热下的温度变化情况, 符号的大小代表测量误差[89]

    Figure 19.  Thermal conductivity variation with temperature (a) and system periodic length (b) [88]; (c) temperature changes of the nanophononic crystals under laser heating, where the symbol size represents measurement errors[89].

    图 20  (a) 三维声子晶体中声子传输方式示意图[91]; (b) 不同空孔隙率下硅基声子晶体热导率随温度变化情况[91]

    Figure 20.  (a) Schematic representation of phonon transport in three-dimensional nanophononic crystals[91]; (b) temperature dependence of thermal conductivity in silicon-based nanophononic crystals with different porosities[91].

    图 21  (a) 光滑的VLS Si纳米线的热导率, 阴影区域是具有均方根粗糙度为1—3 Å的理论预测[93,98]; (b) 粗糙的Si纳米线的热导率(均方根粗糙度为 3—3.25 nm)[93,99]; (c) 在纳米管(晶格结构)上沉积金属铂的示意图[95]; (d), (e) 相应的低放大倍率透射电子显微镜图像, C9H16Pt沉积在电极上前(d)后(e)的碳纳米管(中间的浅灰色线)的扫描电子显微镜图像, 比例尺为5 mm; (f) 热导率测试实验装置示意图[95]

    Figure 21.  (a) Thermal conductivity of smooth VLS Si nanowires. The shaded areas represent theoretical predictions result with root mean square roughness of 1–3 Å[93,98]. (b) Thermal conductivity of rough Si nanowires with root mean square roughness of 3.00–3.25 nm[93,99]. (c) Schematic description of depositing amorphous C9H16Pt (black dots) on a nanotube (lattice structure)[95]. (d), (e) Corresponding low-magnification transmission electron microscopy images of the same carbon nanotube, showing the condition before (d) and after (e) C9H16Pt deposition. Scanning electron microscopy image of a carbon nanotube (light gray line in the center) with C9H16Pt deposited on the electrodes, the scale bar is 5 mm. (f) Schematic diagram of experimental device for thermal conductivity test[95]

    图 22  (a) 周期排布孔硅纳米材料[102]; (b) 规整排布孔硅纳米材料[102]; (c) 不同频率的波穿过规整和无规多孔介质的散射情况[103]; (d) 无规多孔硅热导率在不同孔隙率P = 64%, 71%, 79%, 89%的变化情况[104]

    Figure 22.  (a) Periodic porous silicon nanomaterials[102]; (b) regularly arranged porous silicon nanomaterials[102]; (c) scattering of waves at different frequencies through periodic porous and amorphous porous media[103]; (d) variation of thermal conductivity for amorphous porous silicon with different porosities P = 64%, 71%, 79%, 89%[104].

    图 23  (a) 氦离子辐照后实验实物图和示意图[106]; (b) 硅纳米线热导率随掺杂浓度的变化[106]; (c) 单壁碳纳米管热导率随掺杂浓度下降示意图[16]; (d) 掺杂前后氮化硼热导率随温度的变化[110]

    Figure 23.  (a) Experimental images and schematic diagram after helium ion irradiation[106]; (b) thermal conductivity variation of silicon nanowire with doping concentration[106]; (c) decrease in thermal conductivity of single-walled carbon nanotubes with doping concentration[16]; (d) variation of boron nitride thermal conductivity with temperature before and after doping[110].

    图 24  (a) 由两个不同节段组成的界面的示意图和温度分布图[2]; (b) z = 0处的理想界面分别延伸到每侧的有限厚度$ {\delta }_{1} $和$ {\delta }_{2} $, 与在界面上的声子反射和折射示意图[2]

    Figure 24.  (a) Schematic diagram and temperature distribution of an interface composed of two different segments[2]; (b) the ideal interface extending to finite thicknesses $ {\delta }_{1} $ and $ {\delta }_{2} $ on each side of $ z=0 $, with phonon reflection and refraction at the interface[2].

    图 25  计算界面热阻的理论和数值方法比较

    Figure 25.  Comparison of theoretical and numerical methods for calculating interface thermal resistance.

    图 26  界面热阻的实验测量方法[55,106,127]

    Figure 26.  Experimental methods for measuring interface thermal resistance[55,106,127].

    图 27  界面热阻不对称性的理论计算与实验验证 (a) 理论[137]; (b) 实验[126]

    Figure 27.  Theoretical calculation and experimental verification of interface thermal resistance asymmetry: (a) Theoretical[137]; (b) experiment[126].

    图 28  (a) 均匀、突变和质量梯度一维原子链的示意图[142]; (b) 界面热导与质量梯度中间层的层数关系[142]; (c) 具有质量梯度Si/Ge界面示意图[142]; (d) 界面热导与温度的关系[142]

    Figure 28.  (a) Schematic diagram of uniform, abrupt, and mass-graded one-dimensional atomic chains[142]; (b) relationship between interface thermal conductivity and the number of layers in the mass-graded intermediate layer[142]; (c) schematic diagram of Si/Ge interface with mass gradient[142]; (d) relationship between interfacial thermal conductance and temperature[142].

    图 29  (a) 腔光力学系统示意图, 包含光学腔与一维膜阵列的相互作用[147]; (b) 系统简化模型[147]; (c), (d) 最低(最高)模式下的声子数[147]

    Figure 29.  (a) Schematic diagram of the optomechanical system, including the interaction between the optical cavity and the one-dimensional membrane array[147]; (b) simplified model of the system[147]; (c), (d) phonon numbers in the lowest (highest) mode[147].

    图 30  (a) 具有非线性反馈的机械振子系统[148]; (b), (c) 最低模式(n=1)的振动能在长时间稳态下占主导地位, 实现最低模式的声子(能量)凝聚[148]

    Figure 30.  (a) Mechanical oscillator system with nonlinear feedback[148]; (b), (c) the vibrational energy of the lowest mode (n=1) dominates in the long-term steady state, achieving phonon (energy) condensation in the lowest mode[148].

    图 31  稳态下最低模的声子统计. 非线性反馈诱导的 (a) 最低模式的相位图与 (b) 最低模式的噪声功率谱密度[148]

    Figure 31.  Depicts the phonon statistics of the lowest mode in the steady state. The phase diagram of the lowest mode induced by nonlinear feedback is shown in Figure (a), while Figure (b) displays the noise power spectral density of the lowest mode[148].

    图 32  (a) 低温下声学声子热导率的实验值与温度的关系[152]; 具有(b) catenoidal形量子结构的量子线、(c) 量子点调制的量子结构, 以及(d) 双腔结构调制石墨烯纳米带的量子结构的声子输运和热导率[155,156]

    Figure 32.  (a) The relationship between the experimental value of acoustic phonon thermal conductivity and temperature[152]; phonon transport and thermal conductivity of the quantum structure with (b) catenoidal shaped quantum structure, (c) quantum dot modulated quantum structure, and (d) double cavity structure modulated graphene nanoribbon quantum structure[155,156].

    图 33  (a) 铁磁器件; (b) 铁磁体/非磁性金属(F/N)界面器件; (c) 磁振子-声子散射器件中的能量交换; (d) 不同外磁场下磁振子非弹性热流随温差的变化[164]

    Figure 33.  (a) Ferromagnetic (FM) devices; (b) ferromagnetic/nonmagnetic (F/N) interfaces; (c) the energy exchange in the present magnon-phonon scattering (MPS) devices; (d) the temperature difference and external magnetic field dependence of inelastic heat flow[164].

    图 34  (a) 声子霍尔效应[165]; (b) 理论分析, 霍尔热导率$ {K}_{xy}/T $随温度的变化规律[166]; 基于α-RuCl3实验测得横向热导率$ {K}_{xy} $与(c) 磁场和(d) 温度的关系[166]

    Figure 34.  (a) Phonon Hall effect[165]; (b) three temperature regions for the thermal Hall conductivity[166]; (c) magnetic field and (d) temperature dependence of the transversal heat conductivity $ {K}_{xy} $of α-RuCl3[166].

    图 35  不同温度下(a) 声子霍尔电导率$ {K}_{xy} $[169]和(b) 一阶导数$ {\mathrm{d}}{K}_{xy}/{\mathrm{d}}h $与磁场 h 的非单调关系, T = 50 (点线), 100 (虚线), 和 300 K (实线) [169]

    Figure 35.  (a) Phonon Hall conductivity $ {K}_{xy} $ vs. magnetic field h for different temperatures[169]; (b) $ {\mathrm{d}}{K}_{xy}/{\mathrm{d}}h $ as a function of magnetic field at different temperatures: T =50 (dotted line), 100 (dashed line), and 300 K (solid line) [169].

    图 36  蜂窝状AB晶格中的谷声子 (a) 蜂窝状AB晶格的声子色散关系以及子格A与B在$ k\left(k'\right) $点的声子振动模式示意图[172]; (b) 在$ k\left(k'\right) $点处, 子格A与B非局域部分的相位示意图[172]; (c) 在$ k\left(k'\right) $点处, 1—4各支能带的声子赝角动量[172]

    Figure 36.  Valley phonons in a honeycomb AB lattice: (a) Phonon dispersion relation of a honeycomb AB lattice[172]; (b) phase correlation of the phonon nonlocal part for sublattice A (upper two panels) and sublattice B (lower two panels)[172]; (c) phonon pseudo-angular momentum (PAM) for bands 1 to 4[172].

    图 37  (a) 右旋和(b) 左旋的声子谱, 它们显示出相同的色散但相反的手性分布[177]. 在图(a)中P附近的频率下, (c) 只允许左旋声子从左到右通过螺旋链, (d) 当螺旋的手性发生改变时, 只允许右旋声子从左到右通过螺旋链[177]

    Figure 37.  The phonon spectra for (a) right-handed helix and (b) left-handed helix, which show the same dispersion but opposite chirality distribution[177]; (c) at the frequency around P in figure (a) only left-handed phonons are allowed to pass the helix from left to right, (d) when the chirality of the helix is switched, the situation reverses[177].

    图 38  (a) 铁磁性材料中自旋塞贝克效应的示意图, 通过向铁磁体施加温度梯度, 在相邻的非磁性层(即Cu)中产生自旋电流[178]; (b) 手性声子激发的自旋塞贝克效应的示意图, 通过向非磁性手性体系施加温度梯度, 在没有磁化和磁场的情况下, 手性声子通过手性体系在Cu层中产生自旋电流[178]

    Figure 38.  (a) Schematic illustration of the spin Seebeck effect in a ferromagnetic material. By applying a temperature gradient to the ferromagnet, a spin current is generated in an adjacent non-magnetic layer (that is, Cu) [178]. (b) Schematic illustration of the chiral-phonon-activated spin Seebeck effect. When a temperature difference is applied to a chiral material, a spin current can be produced in the Cu layer due to the propagation of the chiral phonons through the material in the absence of the magnetization and magnetic field[178].

  • [1]

    Moore A L, Shi L 2014 Mater. Today 17 163Google Scholar

    [2]

    Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [3]

    Harper C 2004 Electronic Packaging and Interconnection Handbook. (New York: McGraw-Hill, Inc

    [4]

    Muralidhar R, Borovica-Gajic R, Buyya R 2022 ACM Comput. Surv. 54 1

    [5]

    Waldrop M M 2016 Nature 530 144Google Scholar

    [6]

    Zhang J, Yang X, Feng Y, Li Y, Wang M, Shen J, Wei L, Liu D, Wu S, Cai Z, Xu F, Wang X, Ge W, Shen B 2020 Phys. Rev. Mater. 4 073402Google Scholar

    [7]

    Zhang Z, Ouyang Y, Cheng Y, Chen J, Li N, Zhang G 2020 Phys. Rep. 860 1Google Scholar

    [8]

    Li B, Wang J 2003 Phys. Rev. Lett. 91 044301Google Scholar

    [9]

    Xu X, Chen J, Li B 2016 J. Phys. : Condens. Matter 28 483001Google Scholar

    [10]

    Yu Y F, Minhaj T, Huang L J, Yu Y L, Cao L Y 2020 Phys. Rev. Appl. 13 034059Google Scholar

    [11]

    Xu X, Pereira L F C, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Cong Tinh B, Xie R, Thong J T L, Hong B H, Loh K P, Donadio D, Li B, Oezyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [12]

    Yang N, Xu X, Zhang G, Li B 2012 AIP Adv. 2 041410Google Scholar

    [13]

    Kaburaki H, Machida M 1993 Phys. Lett. A 181 85Google Scholar

    [14]

    Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett. 78 1896Google Scholar

    [15]

    Hu B, Li B, Zhao H 1998 Phys. Rev. E 57 2992Google Scholar

    [16]

    Zhang G, Li B 2005 J. Chem. Phys. 123 114714Google Scholar

    [17]

    Yang N, Zhang G, Li B W 2010 Nano Today 5 85Google Scholar

    [18]

    Liu J, Yang R 2012 Phys. Rev. B 86 104307Google Scholar

    [19]

    Maruyama S 2002 Physica B Condens. Matter 323 193Google Scholar

    [20]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502Google Scholar

    [21]

    Shen S, Henry A, Tong J, Zheng R, Chen G 2010 Nat Nanotechnol 5 251Google Scholar

    [22]

    Chang C W, Okawa D, Garcia H, Majumdar A, Zettl A 2008 Phys. Rev. Lett. 101 075903Google Scholar

    [23]

    Lee V, Wu C H, Lou Z X, Lee W L, Chang C W 2017 Phys. Rev. Lett. 118 135901Google Scholar

    [24]

    Yang L, Tao Y, Zhu Y, Akter M, Wang K, Pan Z, Zhao Y, Zhang Q, Xu Y Q, Chen R, Xu T T, Chen Y, Mao Z, Li D 2021 Nat Nanotechnol 16 764Google Scholar

    [25]

    Yao F, Xia S, Wei H, Zheng J, Yuan Z, Wang Y, Huang B, Li D, Lu H, Xu D 2022 Nano Lett. 22 6888Google Scholar

    [26]

    Rieder Z, Lebowitz J L, Lieb E 2004 J. Math. Phys. 8 1073Google Scholar

    [27]

    Payton D N, Rich M, Visscher W M 1967 Phy. Rev. 160 706Google Scholar

    [28]

    Liu S, Hänggi P, Li N, Ren J, Li B 2014 Phys. Rev. Lett. 112 040601Google Scholar

    [29]

    Li S-N, Cao B-Y 2020 Appl. Math. Lett. 99 105992Google Scholar

    [30]

    Parisi G 1997 Europhys. Lett. 40 357Google Scholar

    [31]

    Eckmann J P, Hairer M 2000 Commun. Math. Phys. 212 105Google Scholar

    [32]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Studies of the Nonlinear Problems; Los Alamos National Lab. (LANL), Los Alamos, NM (United States): 1955.

    [33]

    Berman G P, Izrailev F M 2005 Chaos:An Interdisciplinary Journal of Nonlinear Science 15 015104Google Scholar

    [34]

    Wang Z, Fu W, Zhang Y, Zhao H 2020 Phys. Rev. Lett. 124 186401Google Scholar

    [35]

    Fu W, Zhang Y, Zhao H 2019 Phys. Rev. E 100 052102Google Scholar

    [36]

    Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F 2011 Nanoscale 3 20Google Scholar

    [37]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [38]

    Gu X, Wei Y, Yin X, Li B, Yang R 2018 Rev. Mod. Phys. 90 041002Google Scholar

    [39]

    Lippi A, Livi R 2000 J. Stat. Phys. 100 1147Google Scholar

    [40]

    Yang L, Grassberger P, Hu B 2006 Phys. Rev. E 74 062101Google Scholar

    [41]

    Wang L, Hu B, Li B 2012 Phys. Rev. E 86 040101Google Scholar

    [42]

    Gu X K, Yang R G 2014 Appl. Phys. Lett. 105 131903Google Scholar

    [43]

    Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar

    [44]

    Tobey R a I, Siemens M E, Cohen O, Murnane M M, Kapteyn H C, Nelson K A 2007 Opt. Lett. 32 286Google Scholar

    [45]

    McBennett B, Beardo A, Nelson E E, Abad B, Frazer T D, Adak A, Esashi Y, Li B, Kapteyn H C, Murnane M M, Knobloch J L 2023 Nano Lett. 23 2129Google Scholar

    [46]

    Kollie T G 1977 Phys. Rev. B 16 4872Google Scholar

    [47]

    Beardo A, Knobloch J L, Sendra L, Bafaluy J, Frazer T D, Chao W, Hernandez-Charpak J N, Kapteyn H C, Abad B, Murnane M M, Alvarez F X, Camacho J 2021 ACS Nano 15 13019Google Scholar

    [48]

    Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford University Press

    [49]

    Karniadakis G, Beskok A, Aluru N 2006 Microflows and Nanoflows: Fundamentals and Simulation (New York: Springer Science & Business Media

    [50]

    Graczyk K M, Matyka M 2020 Sci. Rep. 10 21488Google Scholar

    [51]

    Verdier M, Lacroix D, Termentzidis K 2018 Phys. Rev. B 98 155434Google Scholar

    [52]

    Desmarchelier P, Beardo A, Alvarez F X, Tanguy A, Termentzidis K 2022 Int. J. Heat Mass Transfer 194 123003Google Scholar

    [53]

    Lysenko V, Perichon S, Remaki B, Barbier D, Champagnon B 1999 J. Appl. Phys. 86 6841Google Scholar

    [54]

    Ferrando-Villalba P, D’Ortenzi L, Dalkiranis G G, Cara E, Lopeandia A F, Abad L, Rurali R, Cartoixà X, De Leo N, Saghi Z, Jacob M, Gambacorti N, Boarino L, Rodríguez-Viejo J 2018 Sci. Rep. 8 12796Google Scholar

    [55]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [56]

    Zhang Z, Ouyang Y, Guo Y, Nakayama T, Nomura M, Volz S, Chen J 2020 Phys. Rev. B 102 195302Google Scholar

    [57]

    Jiang J, Lu S, Ouyang Y, Chen J 2022 Nanomaterials 12 2854Google Scholar

    [58]

    Li X, Lee S 2019 Phys. Rev. B 99 085202Google Scholar

    [59]

    Scuracchio P, Michel K H, Peeters F M 2019 Phys. Rev. B 99 144303Google Scholar

    [60]

    Lee S, Broido D, Esfarjani K, Chen G 2015 Nat. Commun. 6 6290Google Scholar

    [61]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [62]

    Carr S, Massatt D, Fang S, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420Google Scholar

    [63]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U. S. A. 108 12233Google Scholar

    [64]

    Cocemasov A I, Nika D L, Balandin A A 2013 Phys. Rev. B 88 035428Google Scholar

    [65]

    Li H, Ying H, Chen X, Nika D L, Cocemasov A I, Cai W, Balandin A A, Chen S 2014 Nanoscale 6 13402Google Scholar

    [66]

    Han S, Nie X, Gu S, Liu W, Chen L, Ying H, Wang L, Cheng Z, Zhao L, Chen S 2021 Appl. Phys. Lett. 118 193104Google Scholar

    [67]

    Di Battista G, Seifert P, Watanabe K, Taniguchi T, Fong K C, Principi A, Efetov D K 2022 Nano Lett. 22 6465Google Scholar

    [68]

    Nie X, Zhao L, Deng S, Zhang Y, Du Z 2019 Int. J. Heat Mass Transfer 137 161Google Scholar

    [69]

    Li C, Debnath B, Tan X, Su S, Xu K, Ge S, Neupane M R, Lake R K 2018 Carbon 138 451Google Scholar

    [70]

    Wang M H, Xie Y E, Chen Y P 2017 Chin. Phys. B 26 116503Google Scholar

    [71]

    Cheng Y, Fan Z, Zhang T, Nomura M, Volz S, Zhu G, Li B, Xiong S 2023 Mater. Today Phys. 35 101093Google Scholar

    [72]

    Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C-H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, Zurbuchen M A 2014 Nat. Mater. 13 168Google Scholar

    [73]

    Ni Y, Volz S 2021 J. Appl. Phys. 130 190901Google Scholar

    [74]

    Shao C, Rong Q, Li N, Bao H 2018 Phys. Rev. B 98 155418Google Scholar

    [75]

    Sun L, Zhai F, Cao Z, Huang X, Guo C, Wang H, Ni Y 2023 Chin. Phys. B 32 056301Google Scholar

    [76]

    Wang Y, Huang H, Ruan X 2014 Phys. Rev. B 90 165406Google Scholar

    [77]

    Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P, Ruan X 2020 Nano Energy 69 104428Google Scholar

    [78]

    Honarvar H, Hussein M I 2018 Phys. Rev. B 97 195413Google Scholar

    [79]

    Kothari K, Maldovan M 2017 Sci. Rep. 7 5625Google Scholar

    [80]

    Maldovan M 2013 Nature 503 209Google Scholar

    [81]

    Li B, Tan K T, Christensen J 2017 Phys. Rev. B 95 144305Google Scholar

    [82]

    Costescu R, Cahill D, Fabreguette F, Sechrist Z, George S 2004 Science 303 989Google Scholar

    [83]

    Anufriev R, Yanagisawa R, Nomura M 2017 Nanoscale 9 15083Google Scholar

    [84]

    Anufriev R, Maire J, Nomura M 2021 APL Mater. 9 070701Google Scholar

    [85]

    Anufriev R, Gluchko S, Volz S, Nomura M 2018 ACS Nano 12 11928Google Scholar

    [86]

    Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S, Nomura M 2017 Sci. Adv. 3 e1700027Google Scholar

    [87]

    Wang H, Cheng Y, Fan Z, Guo Y, Zhang Z, Bescond M, Nomura M, Ala-Nissila T, Volz S, Xiong S 2021 Nanoscale 13 10010Google Scholar

    [88]

    Yang L, Chen J, Yang N, Li B 2015 Int. J. Heat Mass Transfer 91 428Google Scholar

    [89]

    Zen N, Puurtinen T A, Isotalo T J, Chaudhuri S, Maasilta I J 2014 Nat. Commun. 5 3435Google Scholar

    [90]

    Yang L, Yang N, Li B 2013 Sci. Rep. 3 1143Google Scholar

    [91]

    Yang L, Yang N, Li B 2014 Nano Lett. 14 1734Google Scholar

    [92]

    Moore A L, Saha S K, Prasher R S, Shi L 2008 Appl. Phys. Lett. 93 083112Google Scholar

    [93]

    Martin P, Aksamija Z, Pop E, Ravaioli U 2009 Phys. Rev. Lett. 102 125503Google Scholar

    [94]

    Maurer L N, Aksamija Z, Ramayya E B, Davoody A H, Knezevic I 2015 Appl. Phys. Lett. 106 133108Google Scholar

    [95]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121Google Scholar

    [96]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar

    [97]

    Lim J, Hippalgaonkar K, Andrews S C, Majumdar A, Yang P 2012 Nano Lett. 12 2475Google Scholar

    [98]

    Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar

    [99]

    Algra R E, Verheijen M A, Borgström M T, Feiner L F, Immink G, van Enckevort W J P, Vlieg E, Bakkers E P A M 2008 Nature 456 369Google Scholar

    [100]

    Li X, Bohn P W 2000 Appl. Phys. Lett. 77 2572Google Scholar

    [101]

    Canham L 2014 Handbook of Porous Silicon (Berlin: Springer International Publishing

    [102]

    Lee J H, Galli G A, Grossman J C 2008 Nano Lett. 8 3750Google Scholar

    [103]

    Ma J, Sadhu J, Ganta D, Tian H, Sinha S 2014 AIP Adv. 4 124502Google Scholar

    [104]

    Gesele G, Linsmeier J, Drach V, Fricke J, Arens-Fischer R 1997 J. Phys. D: Appl. Phys. 30 2911Google Scholar

    [105]

    Zhang G, Li B 2010 Nanoscale 2 1058Google Scholar

    [106]

    Zhao Y, Liu D, Chen J, Zhu L, Belianinov A, Ovchinnikova O S, Unocic R R, Burch M J, Kim S, Hao H, Pickard D S, Li B, Thong J T L 2017 Nat. Commun. 8 15919Google Scholar

    [107]

    Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X, Li B 2018 Nanoscale 10 2727Google Scholar

    [108]

    Chen J, Zhang G, Li B 2009 Appl. Phys. Lett. 95 073117Google Scholar

    [109]

    Yang N, Zhang G, Li B 2008 Nano Lett. 8 276Google Scholar

    [110]

    Chang C W, Fennimore A M, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D, Majumdar A, Zettl A 2006 Phys. Rev. Lett. 97 085901Google Scholar

    [111]

    Yang J, Waltermire S, Chen Y, Zinn A A, Xu T T, Li D 2010 Appl. Phys. Lett. 96 023109Google Scholar

    [112]

    Khalatnikov I 1952 Zh. Eksperim. i Teor. Fiz 23 169

    [113]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [114]

    Young D A, Maris H J 1989 Phys. Rev. B 40 3685Google Scholar

    [115]

    Wang J S, Wang J, Zeng N 2006 Phys. Rev. B 74 033408Google Scholar

    [116]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Commun. 102 517Google Scholar

    [117]

    Yang H, Zhang Z, Zhang J, Zeng X C 2018 Nanoscale 10 19092Google Scholar

    [118]

    Behler J 2016 The Journal of Chemical Physics 145 170901Google Scholar

    [119]

    Zubatiuk T, Isayev O 2021 Acc. Chem. Res. 54 1575Google Scholar

    [120]

    Wu Y-J, Fang L, Xu Y 2019 npj Comput. Mater. 5 56Google Scholar

    [121]

    Jin S, Zhang Z, Guo Y, Chen J, Nomura M, Volz S 2022 Int. J. Heat Mass Transfer 182 122014Google Scholar

    [122]

    Ouyang Y, Yu C, He J, Jiang P, Ren W, Chen J 2022 Phys. Rev. B 105 115202Google Scholar

    [123]

    Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B, Thong J T 2011 Nano Lett. 11 113Google Scholar

    [124]

    Cahill D G 2004 Rev. Sci. Instrum. 75 5119Google Scholar

    [125]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802Google Scholar

    [126]

    Liu D, Xie R, Yang N, Li B, Thong J T L 2014 Nano Lett. 14 806Google Scholar

    [127]

    Sun F, Wang X, Yang M, Chen Z, Zhang H, Tang D 2017 Int. J. Thermophys. 39 5Google Scholar

    [128]

    Giri A, Gaskins J T, Li L, Wang Y-S, Prezhdo O V, Hopkins P E 2019 Phys. Rev. B 99 165139Google Scholar

    [129]

    Foley B M, Hernández S C, Duda J C, Robinson J T, Walton S G, Hopkins P E 2015 Nano Lett. 15 4876Google Scholar

    [130]

    Hopkins P E, Norris P M, Tsegaye M S, Ghosh A W 2009 J. Appl. Phys. 106 023710Google Scholar

    [131]

    Li X, Yang R 2012 Phys. Rev. B 86 054305Google Scholar

    [132]

    Hohensee G T, Wilson R B, Cahill D G 2015 Nat. Commun. 6 6578Google Scholar

    [133]

    Wilson R B, Apgar B A, Hsieh W-P, Martin L W, Cahill D G 2015 Phys. Rev. B 91 115414Google Scholar

    [134]

    Zhong J, Xi Q, Wang Z, Nakayama T, Li X, Liu J, Zhou J 2021 J. Appl. Phys. 129 195102Google Scholar

    [135]

    Pollack G L 1969 Rev. Mod. Phys. 41 48Google Scholar

    [136]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [137]

    Li B, Lan J, Wang L 2005 Phys. Rev. Lett. 95 104302Google Scholar

    [138]

    Ding Y F, Zhu G M, Shen X Y, Bai X, Li B W 2022 Chin. Phys. B 31 126301Google Scholar

    [139]

    Liu D 2014 Ph. D Theses (Singapore: National University of Singapore

    [140]

    Yang N, Li N, Wang L, Li B 2007 Phys. Rev. B 76 020301Google Scholar

    [141]

    Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [142]

    Ma D, Zhao Y, Zhang L 2021 J. Appl. Phys. 129 175302Google Scholar

    [143]

    Fröhlich H 1968 Int. J. Quantum Chem. 2 641Google Scholar

    [144]

    Nardecchia I, Torres J, Lechelon M, Giliberti V, Ortolani M, Nouvel P, Gori M, Meriguet Y, Donato I, Preto J, Varani L, Sturgis J, Pettini M 2018 Phys. Rev. X 8 031061Google Scholar

    [145]

    Zhang Z, Agarwal G S, Scully M O 2019 Phys. Rev. Lett. 122 158101Google Scholar

    [146]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [147]

    Zheng X, Li B 2021 Physical Review A 104 043512Google Scholar

    [148]

    Zheng X, Li B 2022 arXiv preprint arXiv: 2201.00251

    [149]

    Pettit R, Ge W, Kumar P, Luntz-Martin D, Schultz J, Neukirch L, Bhattacharya M, Vamivakas A 2019 Nat. Photonics 13 1Google Scholar

    [150]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232Google Scholar

    [151]

    Rego L G C, Kirczenow G 1999 Phys. Rev. B 59 13080Google Scholar

    [152]

    Schwab K, Henriksen E A, Worlock J M, Roukes M L 2000 Nature 404 974Google Scholar

    [153]

    Santamore D H, Cross M C 2001 Phys. Rev. B 63 184306Google Scholar

    [154]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422Google Scholar

    [155]

    Peng X F, Chen K Q, Wan Q, Zou B, Duan W 2010 Phys. Rev. B 81 195317Google Scholar

    [156]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105Google Scholar

    [157]

    Huang L, Chen S Z, Zeng Y J, Wu D, Li B L, Feng Y X, Fan Z Q, Tang L M, Chen K Q 2020 Adv. Electron. Mater. 6 2000689Google Scholar

    [158]

    王子, 张丹妹, 任捷 2019 物理学报 68 220302Google Scholar

    Wang Z, Zhang D M, Ren J 2019 Acta Phys. Sin. 68 220302Google Scholar

    [159]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [160]

    Jaworski C, Yang J, Mack S, Awschalom D, Heremans J, Myers R 2010 Nat. Mater. 9 898Google Scholar

    [161]

    Ren J 2013 Phys. Rev. B 88 220406Google Scholar

    [162]

    Flipse J, Dejene F K, Wagenaar D, Bauer G E W, Youssef J B, van Wees B J 2014 Phys. Rev. Lett. 113 027601Google Scholar

    [163]

    Zhang L, Wang J S, Li B 2010 Phys. Rev. B 81 100301Google Scholar

    [164]

    Pan H, Tang L M, Chen K Q 2022 Phys. Rev. B 105 064401Google Scholar

    [165]

    邢玉恒, 徐锡方, 张力发 2017 物理学报 22 226601Google Scholar

    Xing Y H, Xu X F, Zhang L F 2017 Acta Phys. Sin. 22 226601Google Scholar

    [166]

    Hentrich R, Roslova M, Isaeva A, Doert T, Brenig W, Büchner B, Hess C 2019 Phys. Rev. B 99 085136Google Scholar

    [167]

    Yang Y F, Zhang G M, Zhang F C 2020 Phys. Rev. Lett. 124 186602Google Scholar

    [168]

    Akazawa M, Shimozawa M, Kittaka S, Sakakibara T, Okuma R, Hiroi Z, Lee H Y, Kawashima N, Han J H, Yamashita M 2020 Phys. Rev. X 10 041059Google Scholar

    [169]

    Zhang L, Ren J, Wang J S, Li B 2010 Phys. Rev. Lett. 105 225901Google Scholar

    [170]

    Saito T, Misaki K, Ishizuka H, Nagaosa N 2019 Phys. Rev. Lett. 123 255901Google Scholar

    [171]

    Zhang L, Niu Q 2014 Phys. Rev. Lett. 112 085503Google Scholar

    [172]

    Zhang L, Niu Q 2015 Phys. Rev. Lett. 115 115502Google Scholar

    [173]

    Zhu H, Yi J, Li M Y, Xiao J, Zhang L, Yang C W, Kaindl R A, Li L J, Wang Y, Zhang X 2018 Science 359 579Google Scholar

    [174]

    Chen H, Wu W, Yang S A, Li X, Zhang L 2019 Phys. Rev. B 100 094303Google Scholar

    [175]

    Gao M, Zhang W, Zhang L 2018 Nano Lett. 18 4424Google Scholar

    [176]

    Chen X, Lu X, Dubey S, Yao Q, Liu S, Wang X, Xiong Q, Zhang L, Srivastava A 2019 Nat. Phys. 15 221Google Scholar

    [177]

    Chen H, Wu W, Zhu J, Yang Z, Gong W, Gao W, Yang S A, Zhang L 2022 Nano Lett. 22 1688Google Scholar

    [178]

    Kim K, Vetter E, Yan L, Yang C, Wang Z, Sun R, Yang Y, Comstock A H, Li X, Zhou J 2023 Nat. Mater. 22 322Google Scholar

    [179]

    Narayan O, Ramaswamy S 2002 Phys. Rev. Lett. 89 200601Google Scholar

    [180]

    Pereverzev A 2003 Phys. Rev. E 68 056124Google Scholar

    [181]

    Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432Google Scholar

    [182]

    Cepellotti A, Fugallo G, Paulatto L, Lazzeri M, Mauri F, Marzari N 2015 Nat. Commun. 6 6400Google Scholar

    [183]

    Huberman S, Duncan R A, Chen K, Song B, Chiloyan V, Ding Z, Maznev A A, Chen G, Nelson K A 2019 Science 364 375Google Scholar

    [184]

    Shang M Y, Mao W H, Yang N, Li B, Lü J T 2022 Phys. Rev. B 105 165423Google Scholar

    [185]

    Yu C, Shan S, Lu S, Zhang Z, Chen J 2023 Phys. Rev. B 107 165424Google Scholar

  • [1] Yang Dong-Chao, Yi Li-Zhi, Ding Lin-Jie, Liu Min, Zhu Li-Ya, Xu Yun-Li, He Xiong, Shen Shun-Qing, Pan Li-Qing, John Q. Xiao. Nonequilibrium steady-state transport properties of magnons in ferromagnetic insulators. Acta Physica Sinica, 2024, 73(14): 147101. doi: 10.7498/aps.73.20240498
    [2] Yang Tian, Ouyang Qi. Study of non-equilibrium statistical physics of protein machine by cryogenic electron microscopy. Acta Physica Sinica, 2024, 73(13): 138701. doi: 10.7498/aps.73.20240592
    [3] Shen Kai-Bo, Liu Ying-Guang, Li Xin, Li Heng-Xuan. Phonon interference effects in graphene nanomesh. Acta Physica Sinica, 2023, 72(12): 123102. doi: 10.7498/aps.72.20230361
    [4] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [5] Xie Zhong-Xiang, Yu Xia, Jia Pin-Zhen, Chen Xue-Kun, Deng Yuan-Xiang, Zhang Yong, Zhou Wu-Xing. Thermoelectric properties of acene molecular junctions. Acta Physica Sinica, 2023, 72(12): 124401. doi: 10.7498/aps.72.20230354
    [6] Wang Yao-Ting, Luo Lan-Yue, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Non-equilibrium transport of charged particles in a wall-confined decaying plasma under an externally applied electric field. Acta Physica Sinica, 2022, 71(23): 232801. doi: 10.7498/aps.71.20221431
    [7] Wu Cheng-Wei, Xie Guo-Feng, Zhou Wu-Xing. Frontiers of investigation on thermal transport in all-solid-state lithium-ion battery. Acta Physica Sinica, 2022, 71(2): 026501. doi: 10.7498/aps.71.20211887
    [8] Han Xiao-Ying, Li Ling-Xiao, Dai Zhen-Sheng, Zheng Wu-Di, Gu Pei-Jun, Wu Ze-Qing. A general model for rapid simulation of hot dense plasmas under non-local thermal equilibrium conditions. Acta Physica Sinica, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [9] Wang Zi, Ren Jie. Nonequilibrium thermal transport and thermodynamic geometry in periodically driven systems. Acta Physica Sinica, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [10] Wang Zi, Zhang Dan-Mei, Ren Jie. Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems. Acta Physica Sinica, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [11] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [12] Yao Yin-Ping, Wan Ren-Gang, Xue Yu-Lang, Zhang Shi-Wei, Zhang Tong-Yi. Positive-negative nonlocal lensless imaging based on statistical optics. Acta Physica Sinica, 2013, 62(15): 154201. doi: 10.7498/aps.62.154201
    [13] Zhu Li-Dan, Sun Fang-Yuan, Zhu Jie, Tang Da-Wei. Study on ultra fast nonequilibrium heat transfers in nano metal films by femtosecond laser pump and probe method. Acta Physica Sinica, 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [14] Bao Zhi-Gang, Chen Yuan-Ping, Ouyang Tao, Yang Kai-Ke, Zhong Jian-Xin. Thermal transport in L-shaped graphene nano-junctions. Acta Physica Sinica, 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [15] Xing Xiu-San. Nonequilibrium statistical information theory. Acta Physica Sinica, 2004, 53(9): 2852-2863. doi: 10.7498/aps.53.2852
    [16] Yan Gui-Shen, Li He-Jun, Hao Zhi-Biao. . Acta Physica Sinica, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [17] LI YU-ZHANG, XU ZHONG-YING, GE WEI-KUN, XU JI-SONG, ZHENG BAO-ZHEN, ZHUANG WEI-HUA. NONEQUILIBRIUM PHONON EFFECTS IN HOT CARRIER RELAXATION PROCESSES OF MULTIPLE QUANTUM WELL STRUCTURES. Acta Physica Sinica, 1989, 38(9): 1540-1544. doi: 10.7498/aps.38.1540
    [18] ZHOU GUANG-ZHAO, SU ZHAO-BIN. TIME REVERSAL SYMMETRY AND NON-EQUILIBRIUM STATISTICAL STATIONARY STATES (I). Acta Physica Sinica, 1981, 30(2): 164-171. doi: 10.7498/aps.30.164
    [19] ZHOU GUANG-ZHAO, SU ZHAO-BIN. TIME REVERSAL SYMMETRY AND NON-EQUILIBRIUM STATISTICAL STATIONARY STATES (II). Acta Physica Sinica, 1981, 30(3): 401-409. doi: 10.7498/aps.30.401
    [20] ZHOU GUANG-ZHAO, HAO BAI-LIN, YU LU. NONEQUILIBRIUM STATISTICAL FIELD THEORY AND CRITICAL DYNAMICS (Ⅱ)——LAGRANGIAN FIELD THEORY FORMULATION. Acta Physica Sinica, 1980, 29(8): 969-977. doi: 10.7498/aps.29.969
Metrics
  • Abstract views:  10684
  • PDF Downloads:  816
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2023
  • Accepted Date:  16 November 2023
  • Available Online:  05 December 2023
  • Published Online:  05 December 2023

/

返回文章
返回