Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hundreds-petawatt laser pulses shaping and heavy ion acceleration based on conical plasma channels

Zhao Na Ou-yang Jian-ming Zou De-Bin Zhang Guo-Bo Gan Long-Fei Shao Fu-Qiu

Citation:

Hundreds-petawatt laser pulses shaping and heavy ion acceleration based on conical plasma channels

Zhao Na, Ou-yang Jian-ming, Zou De-Bin, Zhang Guo-Bo, Gan Long-Fei, Shao Fu-Qiu
PDF
Get Citation
  • In this paper, the effects of conical plasma channels on the laser pulses shaping and the heavy ion acceleration under the extreme light field conditions of hundreds-petawatt are investigated using a particle simulation method. The law of influence of the conical plasma channel on the spatio-temporal waveform and intensity of the incident laser is analyzed, when the QED effect is taken into account. The reason for the shaping laser-enhanced heavy ion acceleration is given, and the role of the QED effect in the acceleration process is explained.
    It is found that, due to the non-linear interference and focusing effects, the conical plasma channel can shape the spatio-temporal waveform of the laser pulse and enhance the laser intensity. A tightly focused (beam waist radius < 1 μm) and ultra-high intensity (enhanced 6 times) shaping laser is obtained for a linearly polarized laser with an intensity of 5.46 × 1022 W/cm2 and a waist radius of 10 μm at an incident angle of θ = 10°. In the simulation, the conical plasma channel is fully ionized high-Z gold plasma with the electron densities up to ne=2626.5nc. Therefore most of the laser energy in the channel is reflected by the channel wall, and the QED effect has less impact on laser focusing and shaping. Using this laser to accelerate an ultra-thin flat target placed at the end of the channel. It is found that, the radiation reaction force can effectively suppress the transverse expansion of the ultra-thin flat target caused by the electron heating and the transverse non-uniform of the laser intensity. The transparency time of the ultra-thin flat target is prolonged, which will allow the gold ions to be fully accelerated. Ultimately, gold ions with a cutoff energy of up to ~ 240 GeV can be obtained. The results are expected to provide theoretical references and technical support for the design of future hundreds-petawatt laser heavy ion acceleration experiments and their application research of high-quality ion source, such as nucleus-nucleus collisions.
  • [1]

    Gonoskov A, Blackburn T G, Marklund M, Bulanov S S 2022 Rev. Mod. Phys. 94 045001

    [2]

    Domański J, Badziak J 2024 Phys. Plasmas 31 023110

    [3]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Badziak J, Domański J 2023 Phys. Plasmas 30 053107

    [5]

    Danson C N, Haefner C, Bromage J, Colin N. Danson, Constantin Haefner, Jake Bromage, Butcher T, Chanteloup J-C F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J,Hillier D I, Hopps N W, KatoY, Khazanov E A, Kodama R, Korn G, Li R, Li Y, Limpert J, Ma J, Nam C H, N David, Papadopoulos D, Penman R R, Qian L, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmári S, Trines R M G M, Zhu J, Zhu P, Zuegel J D 2019 High Power Laser SCI. 7 e54

    [6]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, Raadt T C H, Steinke S, Bin J H, Bulanov S S, Tilborg J, Geddes C G R, Schroeder C B, TóTh C, Esarey E, Swanson K, FanChiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P and Leemans W P 2019 Phys. Rev. Lett. 122 084801

    [7]

    Ke L T, Feng K, Wang W T, Qin Z Y, Yu C H, Wu Y, Chen Y, Qi R, Zhang Z J, Xu Y, Yang X J, Leng Y X, Liu J S, Li R X and Xu Z Z 2021 Phys. Rev. Lett. 126 214801

    [8]

    Wang Y F, Lu W 2022 Chin. Sci. Bull. 67(9)805-808(in Chinese)[王贻芳,鲁巍2022科学通报67(9)805-808]

    [9]

    Ma W J, Liu Zh P, Wang P J, Zhao J R, Yan X Q 2021 Acta Phys. Sin. 70(8)084102(in Chinese)[马文君,刘志鹏,王鹏杰,赵家瑞,颜学庆2021物理学报70(8)084102]

    [10]

    Zhang P D, Wang W Q, Li Zh M, Zhang Z X, Wang Y Ch, Zhou H Y, Yin Y 2023 Acta Phys. Sin. 72(18)184103(in Chinese)[张普渡,王伟权,李哲民,张资旋,王叶晨,周泓宇,银燕2023物理学报72(18)184103]

    [11]

    Jiang K N, Feng K, Ke L T, Yu Ch H, Zhang Zh J, Qin Zh Y, Liu J Sh, Wang W T, Li R X 2021 Acta Phys. Sin. 70(8)084103(in Chinese)[蒋康男,冯珂,柯林佟,余昌海,张志钧,秦志勇,刘建胜,王文涛,李儒新2021物理学报70(8)084103]

    [12]

    Jung D, Yin L, Gautier D C, Wu H-C, Letzring S, Dromey B, Shah R, Palaniyappan S, Shimada T, Johnson R P, Schreiber J, Habs D, Fernández J C, Hegelich B M, Albright B J 2013 Phys. Plasmas 20(8)083103

    [13]

    Braenzel J, Andreev A A, Platonov K, Klingsporn M, Ehrentraut L, Sandner W, Schnurer M 2015 Phys. Rev. Lett. 114 124801

    [14]

    Lindner F H, McCary E, Jiao X, Ostermayr T M, Roycroft R, Tiwari G, Hegelich B M, Schreiber J, Thirolf P G 2019 Plasma Phys. Controlled Fusion 61 055002

    [15]

    Wang P, Gong Z, Lee S G, Shou Y, Geng Y, Jeon C, Kim I J, Lee H W, Yoon J W, Sung J H, Lee S K, Kong D, Liu J, Mei Z, Cao Z, Pan Z, Choi I W, Yan X, Nam C H, Ma W 2021 Phys. Rev. X 11 021049

    [16]

    Li R X 2020 High Power Laser and Particle Beams 32(1)011002(in Chinese)[李儒新2020强激光与粒子束32(1)011002]

    [17]

    Shao B, Li Y, Peng Y, Wang P, Qian J, Leng Y, Li R 2020 Opt. Lett. 45(8)2215

    [18]

    Extreme Light Infrastructure:https://eli-laser.eu/

    [19]

    Zhao N, Zou D B, Jiang X R, Yu T P, Yu M Y, Liu K, Huang T W, Zhang H, Wu S Z, Hu L X, Zhang G B, Yin Y, Shao F Q, Zhuo H B, Zhou C T 2021 Plasma Phys. Control. Fusion 63(3)035009

    [20]

    Zhang D Ch, Ge H X, Ba Y L, Wen W Q, Zhang Y, Chen D Y, Wang H B, Ma X W 2023 Acta Phys. Sin. 72(19)193201(in Chinese)[张大成,葛韩星,巴雨璐,汶伟强,张怡,陈冬阳,汪寒冰,马新文2023物理学报72(19)193201]

    [21]

    Wu D, Qiao B, He X T 2015 Phys. Plasmas 22(9)093108

    [22]

    Wang H Y, Lin C, Sheng Z M, Liu B, Zhao S, Guo Z Y, Lu Y R, He X T, Chen J E, Yan X Q 2011 Phys. Rev. Lett. 107(26)265002

    [23]

    Vshivkov V A, Naumova N M, Pegoraro F, Bulanov S V 1998 Phys. Plasmas 5(7)2727

    [24]

    Ji L L, Shen B F, Zhang X M, Wang F C, Jin Z Y, Xia C Q, Wen M, Wang W P, Xu J C, Yu M Y 2009 Phys. Rev. Lett. 103(21)215005

    [25]

    Mackenroth F, Bulanov S S 2019 Phys. Plasmas 26(2)023103

    [26]

    Liu P, Qu J F, Liu X Y, Li X F, Cai L,Tang J Y, Kong Q 2020 Phys. Rev. Accel. Beams 23 011303

    [27]

    Zou D B, Zhuo H B, Yang X H, Yu T P, Shao F Q, Pukhov A 2015 Phys. Plasmas 22 063103

    [28]

    Ji L L, Geng X S, Wu Y T, Shen B F, Li R X 2021 Acta Phys. Sin. 70(8)085203(in Chinese)[吉亮亮,耿学松,伍艺通,沈百飞,李儒新2021物理学报70(8)085203]

    [29]

    Zhu X L, Wang W M, Yu T P, He F, Chen M, Weng S M, Chen L M, Li Y T, Sheng Zh M, Zhang J 2021 Acta Phys. Sin. 70(8)085202(in Chinese)[朱兴龙,王伟民,余同普,何峰,陈民,翁苏明,陈黎明,李玉同,盛政明,张杰2021物理学报70(8)085202]

    [30]

    https://epochpic.github.io/#about

    [31]

    Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L, Bell A R 2012 Phys. Rev. Lett. 108(16)165006

    [32]

    Bijoy Krishna Das 2003 Integrated Optical Distributed Bragg Reflector and Distributed Feed back Lasers in Er:LiNbO3 Waveguides with Photore fractive Gratings. Ph.D. thesis (Université de Paderborn)

    [33]

    Zhuo H B, Chen Z L, Yu W, Sheng Z M, Yu M Y, Jin Z, Kodama R 2010 Phys. Rev. Lett. 105 065003

  • [1] Zhao Jia-Yi, Hu Peng, Wang Yu-Lin, Wang Jin-Can, Tang Hui-Bo, Hu Guang-Yue. Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil. Acta Physica Sinica, doi: 10.7498/aps.70.20210441
    [2] Cheng Yu-Guo, Xia Guang-Qing. Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster. Acta Physica Sinica, doi: 10.7498/aps.66.075204
    [3] Wang Jian-Li, Guo Liang, Xu Xian-Fan, Ni Zhong-Hua, Chen Yun-Fei. Manipulation of lattice vibration by ultrafast spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.66.014203
    [4] Liu Ming-Wei, Gong Shun-Feng, Li Jin, Jiang Chun-Lei, Zhang Yu-Tao, Zhou Bing-Ju. Non-resonant direct laser acceleration in underdense plasma channels. Acta Physica Sinica, doi: 10.7498/aps.64.145201
    [5] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, doi: 10.7498/aps.63.184201
    [6] Xia Zhi-Lin, Guo Pei-Tao, Xue Yi-Yu, Huang Cai-Hua, Li Zhan-Wang. Investigation of the plasma bursting process in short pulsed laser induced film damage. Acta Physica Sinica, doi: 10.7498/aps.59.3523
    [7] Li Wei-Qing. Deposition of orthorhombic boron nitride films by plasma-enhanced pulsed laser deposition. Acta Physica Sinica, doi: 10.7498/aps.58.6530
    [8] Qiu Kun, Wu Bao-Jian, Wen Feng. Nonlinear propagation of circularly polarized light in magneto-optic fiber Bragg gratings. Acta Physica Sinica, doi: 10.7498/aps.58.1726
    [9] Zeng Shu-Guang, Zhang Bin. Inverse problem of optical parametric chirped pulse amplification. Acta Physica Sinica, doi: 10.7498/aps.58.2476
    [10] Luan Shi-Xia, Zhang Qiu-Ju, Gui Wei-Ling. Plasma Bragg gratings generated by the interaction of two counter-propagating laser pulses with plasmas. Acta Physica Sinica, doi: 10.7498/aps.57.7030
    [11] Luan Shi-Xia, Zhang Qiu-Ju, Wu Hui-Chun, Sheng Zheng-Ming. Self-compression and splitting of laser pulse in plasmas. Acta Physica Sinica, doi: 10.7498/aps.57.3646
    [12] Splitting of ultrashort laser pulses propagating in plasmas and the generation of soliton-like structures. Acta Physica Sinica, doi: 10.7498/aps.56.7106
    [13] Lin Zhao-Xiang, Wu Jin-Quan, Gong Shun-Sheng. Spectroscopic study on the air plasma induced by delayed dual laser pulses. Acta Physica Sinica, doi: 10.7498/aps.55.5892
    [14] Wang Wei-Min, Zheng Chun-Yang. Self-focusing of ultra-intense short laser pulses in plasmas with various density distributions. Acta Physica Sinica, doi: 10.7498/aps.55.310
    [15] Liu Zhan-Jun, Zheng Chun-Yang, Cao Li-Hua, Li Bin, Zhu Shao-Ping. Influence of under-dense plasma on laser conical target interaction. Acta Physica Sinica, doi: 10.7498/aps.55.304
    [16] Zhang Qiu-Ju, Sheng Zheng-Ming, Cang Yu, Zhang Jie. Density modulation produced by ultrashort laser pulses and the phase reflection induced in underdense plasmas. Acta Physica Sinica, doi: 10.7498/aps.54.4217
    [17] Chen Gang, Pan Bai-Liang, Yao Zhi-Xin. Parametric study of plasma resistance in gas pulsed discharges. Acta Physica Sinica, doi: 10.7498/aps.52.1635
    [18] Lu Xin-Pei, Pan Yuan, Zhang Han-Hong. . Acta Physica Sinica, doi: 10.7498/aps.51.1768
    [19] LAI GUO-JUN, JI PEI-YONG. PHOTON ACCELERATION BASED ON LASER-PLASMA. Acta Physica Sinica, doi: 10.7498/aps.49.2399
    [20] CHENG CHENG, SUN WEI, TANG CHUAN-SHUN. TIME RESOLVED ELECTRON TEMPERATURE AND DENSITY IN A PULSED LASER PLASMA. Acta Physica Sinica, doi: 10.7498/aps.37.1150
Metrics
  • Abstract views:  95
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Available Online:  09 July 2024

/

返回文章
返回