Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatial orientation of CdS nanowires based on second harmonic generation spectroscopy and microscopic imaging

Ren Li-Qing Yang Qiang Ji Chao-Ran Chi Jiao Hu Yun Wei Ying-Chun Xu Jin-You

Citation:

Spatial orientation of CdS nanowires based on second harmonic generation spectroscopy and microscopic imaging

Ren Li-Qing, Yang Qiang, Ji Chao-Ran, Chi Jiao, Hu Yun, Wei Ying-Chun, Xu Jin-You
PDF
HTML
Get Citation
  • The second harmonic generation (SHG), as a nonlinear optical effect, has a wide range of applications in obtaining information such as material composition, structure, and properties due to its good polarization sensitivity. Although SHG spectroscopy or SHG microscopy has been used to explore the precise positioning or tracking of nanowires, there are few reports on the combination of SHG spectroscopy and SHG microscopy to study the structure of nanomaterials and the spatial orientation of crystal axes. In this work, we investigate the spatial orientation and crystal axis orientation of cadmium sulfide (CdS) nanowires by combining SHG spectroscopy and microscopic imaging. Firstly, we experimentally and theoretically study the spectral intensity of the SHG of CdS nanowires with the polarization direction of the incident light based on the all-optical analysis method proposed by the predecessors. We also analyze the influence of the azimuth angle of the crystal axis γ, ω and φ on the pattern of the SHG of CdS nanowires in detail. Secondly, through the mutual verification of theoretical calculations and experimental measurement results, we successfully determine the three axial orientations of a single CdS nanowire. Finally, we also investigate the spatial orientation of a single CdS nanowire by using the polarization-dependent SHG microscopic imaging method. It is shown that different parts of the CdS nanowire have different SHG responses when the polarization is changed. These results provide a new idea and an important reference for studying the application of SHG spectroscopy and microscopic imaging in the research of high-precision spatial positioning of nanomaterials. This study provides important enlightenment for realizing the potential applications of nanomaterials in biomedicine.
      Corresponding author: Ren Li-Qing, liqing_ren@yulinu.edu.cn ; Xu Jin-You, jinyou.xu@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12064046), the Science and Technology Resources Sharing Platform Project of Shaanxi Province, China (Grant No. 2023-CX-PT-16), and the Youth Innovation Team Project of Shaanxi Province, China (Grant No. 23JP202).
    [1]

    白瑞雪, 杨珏晗, 魏大海, 魏钟鸣 2020 物理学报 69 184211Google Scholar

    Bai R X, Yang Y H, Wei D H, Wei Z M 2020 Acta Phys. Sin. 69 184211Google Scholar

    [2]

    Fan X, Zhang M L, Shafiq I, Zhang W J, Lee C S, Lee S T 2009 Cryst. Growth Des. 9 1375Google Scholar

    [3]

    Lin Y F, Song J, Ding Y, Lu S Y, Zhang Z L 2008 Adv. Mater. 20 3127Google Scholar

    [4]

    Zhai T Y, Gu Z J, Zhong H Z, Dong Y, Ma Y, Fu H B, Li Y F, Yao J N 2007 Cryst. Growth Des. 7 488Google Scholar

    [5]

    Lin Y F, Song J, Ding Y, Lu S Y, Zhang Z L 2008 Appl. Phys. Lett. 92 022105Google Scholar

    [6]

    Zhai T Y, Fang X S, Li L, Bando Y, Golberg D 2010 Nanoscale 2 168Google Scholar

    [7]

    Ma R M, Wei X L, Dai L, Dai L, Huo H B, Qin G G 2007 Nanotechnology 18 205605Google Scholar

    [8]

    Li H Q, Wang X, Xu J Q, Zhang Q, Bando Y, Golberg D 2013 Adv. Mater. 25 3017Google Scholar

    [9]

    Nakayama Y, Pauzauskie P, Radenovic A, Onorato R M, Saykally R J, Liphardt J, Yang P D 2007 Nature 447 1098Google Scholar

    [10]

    Prasanth R, van Vugt L K, Vanmaekelbergh D A M, Gerritsen H C 2006 Appl. Phys. Lett. 88 181501Google Scholar

    [11]

    Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L, Lieber C M 2007 Nature 449 885Google Scholar

    [12]

    Allen J E, Hemesath E R, Perea D E, Lensch-Falk J L, Liz Y, Yin F, Gass M H, Wang P, Bleloch A L, Palmer R E, Lauhon L J 2008 Nat. Nanotechnol. 3 168Google Scholar

    [13]

    Mu S, Chang J C, Lee S T 2008 Nano Lett. 8 104Google Scholar

    [14]

    Peng K Q, Wang X, Wu X L, Lee S T 2009 Nano Lett. 9 3704Google Scholar

    [15]

    Nadia M J, Nada H 2018 International Conference on Materials Engineering and Science Istanbul Turkey, August 8–11, 2018 p012111

    [16]

    Hu H B, Wang K, Long H, Liu W W, Wang B, Lu P X 2015 Nano Lett. 15 3351Google Scholar

    [17]

    Bautista G, Makitalo J, Chen Ya, Dhaka V, Grasso M, Karvonen L, Jiang H, Huttunen M J, Huhtio T, Lipsanen H, Kauranen M 2015 Nano Lett. 15 1564Google Scholar

    [18]

    Kim W, Ng J K, Kunitake M E, Conklin B R, Yang P D 2007 J. Am. Chem. Soc. 129 7728Google Scholar

    [19]

    Jung Y, Tong L, Tanaudommongkon A, Cheng J X, Yang C 2009 Nano Lett. 9 2440Google Scholar

    [20]

    Xu J Y, Rechav K, Popovitz-Biro R, Nevo I, Feldman Y, Joselevich E 2018 Adv. Mater. 30 1800413Google Scholar

    [21]

    Wang J J, Zhang X, Deng J B, Hu X, Hu Y, Mao J, Ma M, Gao Y H, Wei Y C, Li F, Wang Z H, Liu X L, Xu J Y, Ren L Q 2021 Molecules 26 5178Google Scholar

    [22]

    Shoji I, Kondo T, Ito R 2002 Opt. Quant. Electron. 34 797Google Scholar

  • 图 1  单根CdS纳米线的SHG实验装置与测量结果研究 (a) 化学气相沉积法生长的单根CdS纳米线SEM图; (b) SHG光谱与显微成像装置及CdS纳米线的SHG显微成像图; (c) 归一化处理的激光光谱(红色虚线)与SHG光谱(蓝色实线); (d) SHG信号强度和激发光强度平方之间的关系图; 测量误差也显示在图中; (e) 实验室框架的几何形状(XYZ), 线偏振泵浦激光沿Z轴传输. 泵浦激光的光电场EiXY平面内, 与纳米线生长轴成可变角度θ; (f) 晶体框架(xcyczc)在实验室框架中的相对位置; φzcZ轴之间的夹角, γX轴和zcxy平面上的投影($ c' $)之间的夹角, ωxcXY平面和xcyc平面的交线之间的夹角, 晶体zc的取向与CdS纳米线的c轴一致, c轴由φγ角定义

    Figure 1.  Experimental setup and measurement of single CdS nanowire: (a) SEM image of the single CdS nanowire prepared via chemical vapor deposition growth; (b) SHG spectroscopic and microscopic imaging device and the SHG image of CdS nanowire; (c) normalized laser spectra (red dotted lines) versus SHG spectra (blue solid lines); (d) the relationship between SHG signal intensity and excitation intensity, error bar is also shown; (e) geometry of the laboratory frame (XYZ), the linearly polarized pumped laser propagates along the z axis, the opto-electric field Ei of the pumped laser in the XY plane has a variable angle θ with the growth axis of the nanowire; (f) the relative position of the crystal frame (xcyczc) in the laboratory frame, Φ is the angle between the zc and z axes, γ is the angle between the X axis and the projection of zc on the XY plane, ω is the angle between the intersection of the xc and XY planes and the xcyc planes, the orientation of zc is consistent with the C axis of CdS nanowires, which is defined by φ and γ angles.

    图 2  测得的 SHG 强度与极化角θ的函数关系的极坐标图 (a) CdS纳米线的晶体取向确定为φ = 104°, γ = 39°, ω = 78°, 点代表实验数据, 实线代表理论拟合; (b), (c)相关的理论拟合, 只需改变γ值, 同时保持φω与图(a)相同; (d)取向为φ = 78°, γ = 28°, ω = 85°的另一个CdS纳米线的SHG花型图; (e), (f)理论拟合, 只需改变γ值, 同时保持φω与图(d)相同

    Figure 2.  Polarization-dependent SHG patterns in different single CdS nanowires: (a) Crystal orientation of CdS nanowires is determined as φ = 104°, γ = 39°, ω = 78°, the points represent experimental data and the solid lines represent theoretical fittings; (b), (c) related theoretical fittings, only changing γ values while keeping φ and ω the same as panel (a); (d) the orientation is φ = 78°, γ = 28°, SHG pattern of another CdS nanowire with ω = 85°; (e), (f) theoretical fittings with different γ values, while φ and ω are remained the same as panel (d).

    图 3  不同单根CdS纳米线中偏振相关的SHG强度随偏振角θ的变化 (a) CdS纳米线的晶体取向确定为φ = 74°, γ = 39°, ω = 80°, 点代表实验数据, 实线代表理论拟合; (b), (c)相关的理论拟合, 只需改变ω值, 同时保持φγ与图(a)相同; (d)取向为φ = 78°, γ = 28°, ω = 85°的另一个CdS纳米线的SHG花型图; (e), (f)理论拟合, 只需改变 ω 值, 同时保持φγ与图(d)中相同

    Figure 3.  Polarization-dependent SHG patterns in different single CdS nanowires: (a) Crystal orientation of CdS nanowires is determined as φ = 74°, γ = 39°, ω = 80°, the points represent experimental data and the solid lines represent theoretical fittings; (b), (c) related theoretical fittings, only changing ω values while keeping φ and γ the same as panel (a); (d) the orientation is φ = 78°, γ = 28°, SHG pattern of another CdS nanowire with ω = 85°; (e), (f) theoretical fittings with different ω values, while φ and γ are remained the same as panel (d).

    图 4  测量的SHG强度作为偏振角的函数的极坐标图 (a)晶体取向为 φ = 74°, γ = 39°, ω = 80°的单根CdS纳米线的SHG图形, 点代表实验数据, 实线代表理论拟合; (b), (c)相关的理论拟合, 只需改变φ的值, 同时保持γω与图(a)中的相同

    Figure 4.  Measured SHG strength as a function of the polarization angle θ is shown in polar coordinates: (a) SHG pattern of a single CdS nanowire with the crystal orientation φ = 74°, γ = 39°, ω = 80° is obtained, points represent experimental data, while the solid lines represent theoretical fittings; (b), (c) theoretical fits with different φ values, while γ and ω are remained the same as panel (a).

    图 5  不同偏振方向下CdS纳米线的SHG显微成像图与相应光谱图 (a)偏振方向角为0°的SHG显微成像图; (b) 偏振方向角为0°的SHG光谱; (c)偏振方向角为45°的SHG显微成像图; (d) 偏振方向角为45°的SHG光谱

    Figure 5.  SHG microscopic image of CdS nanowire under different polarization angle of input laser: (a) SHG microscopic image of CdS nanowire with polarization angle at 0°; (b) SHG spectrum of CdS nanowire with polarization angle at 0°; (c) SHG microscopic image of CdS nanowire with polarization angle at 45°; (d) SHG spectrum of CdS nanowire with polarization angle at 45°.

  • [1]

    白瑞雪, 杨珏晗, 魏大海, 魏钟鸣 2020 物理学报 69 184211Google Scholar

    Bai R X, Yang Y H, Wei D H, Wei Z M 2020 Acta Phys. Sin. 69 184211Google Scholar

    [2]

    Fan X, Zhang M L, Shafiq I, Zhang W J, Lee C S, Lee S T 2009 Cryst. Growth Des. 9 1375Google Scholar

    [3]

    Lin Y F, Song J, Ding Y, Lu S Y, Zhang Z L 2008 Adv. Mater. 20 3127Google Scholar

    [4]

    Zhai T Y, Gu Z J, Zhong H Z, Dong Y, Ma Y, Fu H B, Li Y F, Yao J N 2007 Cryst. Growth Des. 7 488Google Scholar

    [5]

    Lin Y F, Song J, Ding Y, Lu S Y, Zhang Z L 2008 Appl. Phys. Lett. 92 022105Google Scholar

    [6]

    Zhai T Y, Fang X S, Li L, Bando Y, Golberg D 2010 Nanoscale 2 168Google Scholar

    [7]

    Ma R M, Wei X L, Dai L, Dai L, Huo H B, Qin G G 2007 Nanotechnology 18 205605Google Scholar

    [8]

    Li H Q, Wang X, Xu J Q, Zhang Q, Bando Y, Golberg D 2013 Adv. Mater. 25 3017Google Scholar

    [9]

    Nakayama Y, Pauzauskie P, Radenovic A, Onorato R M, Saykally R J, Liphardt J, Yang P D 2007 Nature 447 1098Google Scholar

    [10]

    Prasanth R, van Vugt L K, Vanmaekelbergh D A M, Gerritsen H C 2006 Appl. Phys. Lett. 88 181501Google Scholar

    [11]

    Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L, Lieber C M 2007 Nature 449 885Google Scholar

    [12]

    Allen J E, Hemesath E R, Perea D E, Lensch-Falk J L, Liz Y, Yin F, Gass M H, Wang P, Bleloch A L, Palmer R E, Lauhon L J 2008 Nat. Nanotechnol. 3 168Google Scholar

    [13]

    Mu S, Chang J C, Lee S T 2008 Nano Lett. 8 104Google Scholar

    [14]

    Peng K Q, Wang X, Wu X L, Lee S T 2009 Nano Lett. 9 3704Google Scholar

    [15]

    Nadia M J, Nada H 2018 International Conference on Materials Engineering and Science Istanbul Turkey, August 8–11, 2018 p012111

    [16]

    Hu H B, Wang K, Long H, Liu W W, Wang B, Lu P X 2015 Nano Lett. 15 3351Google Scholar

    [17]

    Bautista G, Makitalo J, Chen Ya, Dhaka V, Grasso M, Karvonen L, Jiang H, Huttunen M J, Huhtio T, Lipsanen H, Kauranen M 2015 Nano Lett. 15 1564Google Scholar

    [18]

    Kim W, Ng J K, Kunitake M E, Conklin B R, Yang P D 2007 J. Am. Chem. Soc. 129 7728Google Scholar

    [19]

    Jung Y, Tong L, Tanaudommongkon A, Cheng J X, Yang C 2009 Nano Lett. 9 2440Google Scholar

    [20]

    Xu J Y, Rechav K, Popovitz-Biro R, Nevo I, Feldman Y, Joselevich E 2018 Adv. Mater. 30 1800413Google Scholar

    [21]

    Wang J J, Zhang X, Deng J B, Hu X, Hu Y, Mao J, Ma M, Gao Y H, Wei Y C, Li F, Wang Z H, Liu X L, Xu J Y, Ren L Q 2021 Molecules 26 5178Google Scholar

    [22]

    Shoji I, Kondo T, Ito R 2002 Opt. Quant. Electron. 34 797Google Scholar

  • [1] Dou Lin, Ma Yan-Na, Gu Zhao-Qi, Liu Jia-Tong, Gu Fu-Xing. Passive near-field optical scanning imaging based on semiconductor nanowire/tapered microfiber probe. Acta Physica Sinica, 2022, 71(4): 044201. doi: 10.7498/aps.71.20211810
    [2] Hong Xin, Wang Xiao-Qiang, Li Dong-Xue, Shang Yun-Jing. Core-cap heterodimer independent of polarization direction of excitation light. Acta Physica Sinica, 2022, 71(3): 037801. doi: 10.7498/aps.71.20211381
    [3] Research on Passive Near-field Optical Scanning Imaging Based on Semiconductor Nanowire/Tapered Microfiber Probe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211810
    [4] Qi Zhi-Ming, Liang Wen-Yao. Reflection phase characteristics and their applications based on one-dimensional coupled-cavity photonic crystals with gradually changed thickness ofsurface layer. Acta Physica Sinica, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [5] Gao Peng-Fei, Liu Tie, Chai Shao-Wei, Dong Meng, Wang Qiang. Influence of magnetic flux density and cooling rate on orientation behavior of Tb0.27Dy0.73Fe1.95 alloy during solidification process. Acta Physica Sinica, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [6] Wang Xian-Bin, Lin Xin, Wang Li-Lin, Bai Bei-Bei, Wang Meng, Huang Wei-Dong. Effect of crystallographic orientation on dendrite growth in directional solidification. Acta Physica Sinica, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [7] Zhong Ming-Liang, Li Shan, Xiong Zu-Hong, Zhang Zhong-Yue. Plasmonic properties of silver cross-shape nanostructure. Acta Physica Sinica, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [8] Wang Li-Lin, Wang Xian-Bin, Wang Hong-Yan, Lin Xin, Huang Wei-Dong. Effect of crystallographic orientation on instability behavior of planar interface in directional solidification. Acta Physica Sinica, 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [9] Li Chuan, Liu Jing-Hua, Chen Li-Biao, Jiang Cheng-Bao, Xu Hui-Bin. Crytallographic orientation and magmetostriction of FeGa crystals. Acta Physica Sinica, 2011, 60(9): 097505. doi: 10.7498/aps.60.097505
    [10] Li Shan, Zhong Ming-Liang, Zhang Li-Jie, Xiong Zu-Hong, Zhang Zhong-Yue. Effects of incident polarization and electric field coupling on the surface plasmon properties of square hollow Ag nanostructures. Acta Physica Sinica, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [11] Li Yi-Yu, Wang Yuan-Yuan, Chen Hao, Zhu De-Xi, Hu Chuan, Qu Jia. Polarization dependent phase grating based on two-dimensional structured thin films. Acta Physica Sinica, 2010, 59(7): 5110-5115. doi: 10.7498/aps.59.5110
    [12] Wang Hua-Tao, Qin Zhao-Dong, Ni Yu-Shan, Zhang Wen. Multi-scale simulation of the deformation in nano-indentation under different crystal orientations. Acta Physica Sinica, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [13] Zhang Shan, Wu Fu-Quan, Wu Wen-Di. Characteristics of multistage quartz optical filter based on the optical rotatory dispersion effect. Acta Physica Sinica, 2008, 57(8): 5020-5026. doi: 10.7498/aps.57.5020
    [14] Wang Li-Feng, Ye Wen-Hua, Li Ying-Jun. Second harmonic generation by the Kelvin-Helmholtz instability for two-dimensional incompressible fluid. Acta Physica Sinica, 2008, 57(5): 3038-3043. doi: 10.7498/aps.57.3038
    [15] The surface mapping and crystal orientation of body-centered cubic thin metal tungsten films of different thickness. Acta Physica Sinica, 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [16] Shen Xiao-Peng, Han Kui, Shen Yi-Feng, Li Hai-Peng, Xiao Zheng-Wei, Zheng Jian. Self-collimation of unpolarized electromagnetic waves in 2D photonic crystals. Acta Physica Sinica, 2006, 55(6): 2760-2764. doi: 10.7498/aps.55.2760
    [17] Ma Yang-Hua, Zhao Jian-Lin, Wang Wen-Li, Huang Wei-Dong. Optimum phase matching for SHG in biaxial crystals. Acta Physica Sinica, 2005, 54(5): 2084-2089. doi: 10.7498/aps.54.2084
    [18] Li Rong, Ren Kun, Ren Xiao-Bin, Zhou Jing, Liu Da-He. Angular and wavelength selectivity of band gaps of holographic photonic crystals for different polarizations. Acta Physica Sinica, 2004, 53(8): 2520-2525. doi: 10.7498/aps.53.2520
    [19] Huang Jin-Zhe, Ren De-Ming, Hu Xiao-Yong, Qu Yan-Chen, Y.Andreev, P.Geiko, V. Badikov, G.Lanskii. Nonlinear optical properties of mixed Cd0.35Hg0.65Ga2S4 crystal*. Acta Physica Sinica, 2004, 53(11): 3761-3765. doi: 10.7498/aps.53.3761
    [20] WANG YI-SHAN, CHEN GUO-FU, YU LIAN-JUN, ZHAO SHANG-HONG, ZHAO WEI. GENERATION OF THE HIGH EFFICIENCY HIGH PEAK-POWER FEMTOSECOND BLUE OPTICAL PULSE. Acta Physica Sinica, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
Metrics
  • Abstract views:  1347
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2024
  • Accepted Date:  10 July 2024
  • Available Online:  13 July 2024
  • Published Online:  20 August 2024

/

返回文章
返回