Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation Study on "Wisp" Electron Spectra Generated by NWC Very Low Frequency Transmitter Signals

Liu Yang-Xi-Zi Xiang Zheng Zhou Chen Ni Bin-Bin Dong Jun-Hu Hu Jing-Le Wang Jian-Hang Guo Hao-Zhi

Citation:

Simulation Study on "Wisp" Electron Spectra Generated by NWC Very Low Frequency Transmitter Signals

Liu Yang-Xi-Zi, Xiang Zheng, Zhou Chen, Ni Bin-Bin, Dong Jun-Hu, Hu Jing-Le, Wang Jian-Hang, Guo Hao-Zhi
PDF
Get Citation
  • Very low frequency signals emitted by worldwide spread ground-based man-made transmitters, which primarily propagate within Earth-ionospheric waveguides, are used for submarine communication. A portion of these signals penetrates the ionosphere and leaks into the magnetosphere when the ionospheric electron density decrease on the nightside due to the attenuated sunlit. VLF transmitter signals in the magnetosphere can scatter electrons in the inner radiation belt at energies of 100s keV into the drift loss cone through cyclotron resonance, which is an important loss mechanism for electrons in the inner radiation belt, and also playing an important role in transferring energy and mass from magnetosphere to ionosphere. Electrons scattered by transmitter signals exhibit “wisp” signature in L-Ek spectrum, satisfying the first-order cyclotron resonance relationship between electrons and the transmitter signals. The “wisp” spectrum can be clearly observed by Low Earth Orbit satellites, offering opportunities to study wave-particle interactions in near-Earth space. In this study, using the Drift-Diffusion-Source model, we reproduce the “wisp” spectrum formed by scattering effects of NWC transmitter signals observed by DEMETER satellite on March 19, 2009. Our simulation results suggest that the equatorial pitch angle of electrons observed by DEMETER varies with the longitude, resulting in distinctions in the observed “wisp” spectrum along different longitudes. Specifically, as the satellite approaches South Atlantic Anomaly (SAA) region, both the energy range and flux level of the observed “wisp” spectrum gradually increase. When using the wave normal angle model (the central wave normal angle is 60°) and the background electron density model from previous studies, the energy range of the simulated “wisp” spectra is higher than the observations. Adjusting the central wave normal angle to 40° or increasing the background density by a factor of 1.3, the simulated results agree well with the observations. Our results clarify the scattering effect of NWC transmitter signals on electrons in the radiation belt, and underscore the importance of analyzing the formation of “wisp” spectrum for understanding wave-particle interactions in near-earth space. Additionally, the Drift-Diffusion-Source model can be used to study wave-particle interactions in the inner radiation belt, providing an important basis for developing radiation belt remediation technology.
  • [1]

    Baker D N, Kanekal S G, Hoxie V C, Henderson M G, Li X, Spence H E, Elkington S R, Friedel R H W, Goldstein J, Hudson M K, Reeves G D, Thorne R M, Kletzing C A, Claudepierre S G 2013 Science 340 186

    [2]

    Dong J, Xiang Z, Ni B, Liu Y 2023 J. Geophys. Res. Space Physics 128 e2023JA031869

    [3]

    Guo D, Xiang Z, Ni B, Cao X, Fu S, Zhou R, Gu X, Yi J, Guo Y, Jiao L 2021 Geophys. Res. Lett. 48 e2021GL095714

    [4]

    Guo D, Xiang Z, Ni B, Jin T, Zhou R, Yi J, Liu Y, Dong J 2023 J. Geophys. Res. Space Physics 128 e2023JA031407

    [5]

    Tang C L, Xie X J, Ni B, Su Z P, Reeves G D, Zhang J C, Baker D N, Spence H E, Funsten H O, Blake J B, Wygant J R, Dai G Y 2018 J. Geophys. Res. Space Physics 123 4895

    [6]

    Yang X, Ni B, Yu J, Zhang Y, Zhang X, Sun Y 2017 J. Geophys. Res. Space Physics 122 6255

    [7]

    Zhu Q, Cao X, Gu X, Ni B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Physics 126 e2020JA029057

    [8]

    Cao X, Lu P, Zhu Q, Ma X, Ni B B 2023 Chin. J. Geophys. 66 1796 (in Chinese) [曹兴, 陆鹏, 朱琪, 马新, 倪彬彬 2023 地球物理学报 66 1796]

    [9]

    Carlsten B E, Colestock P L, Cunningham G S, Delzanno G L, Dors E E, Holloway M A, Jeffery C A, Lewellen J W, Marksteiner Q R, Nguyen D C, Reeves G D, Shipman K A 2019 IEEE Trans. Plasma Sci. 47 2045

    [10]

    Golkowski M, Harid V, Hosseini P 2019 Front. Astron. Space Sci. 6 2

    [11]

    Johnston W R, Ginet G P, Starks M J, McCollough J P, Sanchez J C, Song P, Galkin I A, Inan U S, Lauben D S, Tu J, Reinisch B W, Linscott I R, Roche K, Stelmash S, Allgeier S, Lambour R, Schoenberg J, Gillespie W, Farrell W M, Xapsos M A, Roddy P A, Lindstrom C D, Pedinotti G F, Huston S L, Albert J M, Sinclair A J, Davis L D, Carilli J A, Cooke D L, Parker C W 2023 J. Geophys. Res. Space Physics 128 e2022JA030771

    [12]

    Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056

    [13]

    Hua M, Li W, Ni B, Ma, Q., Green, A., Shen, X., Claudepierre S G, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G D 2020 Nat. Commun. 11 4847

    [14]

    Hua M, Bortnik J, Ma Q, Bernhardt P A 2022 Geophys. Res. Lett. 49 e2022GL099258

    [15]

    Ni B, Hua M, Gu X, Fu S, Xiang Z, Cao X, Ma X 2022 Sci. China Earth Sci. 65 391

    [16]

    Ni B, Summers D, Xiang Z, Dou, X, Tsurutani B T, Meredith N P, Dong J, Chen L, Reeves G D, Liu X, Tao X, Gu X, Ma X, Yi J, Fu S, Xu W 2023 J. Geophys. Res. Space Physics 128 e2023JA031325

    [17]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [18]

    Albert J M, Starks M J, Selesnick R S, Ling A G, O'Malley S, Quinn R A 2020 J. Geophys. Res. Space Physics 125 e2019JA027030

    [19]

    Graf K L, Inan U S, Piddyachiy D, Kulkarni P, Parrot M, Sauvaud J A 2009 J. Geophys. Res. Space Physics 114 A07205

    [20]

    Imhof W L, Reagan J B, Voss H D, Gaines E E, Datlowe D W, Mobilia J, Helliwell R A, Inan U S, Katsufrakis J, Joiner R G 1983 Geophys. Res. Lett. 10 361

    [21]

    Koons H C, Edgar B C, Vampola A L 1981 J. Geophys. Res. Space Physics 86 640

    [22]

    Li L Y, Wang Z Y, Yu J, Cao J B 2021 J. Geophys. Res. Space Physics 126 e2020JA028879

    [23]

    Clilverd M A, Rodger C J, Gamble R, Meredith N P, Parrot M, Berthelier J-J, Thomson N R 2008 J. Geophys. Res. Space Physics 113 A04211

    [24]

    Wang Y L, Xiang Z, Zeren Z M, Ni B B, Liu Y X Z, Zhang X M, Ouyang X Y, Wu Y Y, Shen X H 2023 Chin. J. Geophys. 66 4451 (in Chinese) [王亚璐, 项正, 泽仁志玛, 倪彬彬, 刘阳希子, 张学民, 欧阳新艳, 吴迎燕, 申旭辉 2023 地球物理学报 66 4451]

    [25]

    Ma Q, Mourenas D, Li W, Artemyev A, Thorne R M 2017 Geophys. Res. Lett. 44 6483

    [26]

    Ma Q, Gu W, Claudepierre S G, Li W, Bortnik J, Hua M, Shen X C 2022 J. Geophys. Res.Space Physics 127 e2022JA030349

    [27]

    Meredith N P, Horne R B, Clilverd M A, Ross J P J 2019 J. Geophys. Res. Space Physics 124 5246

    [28]

    Ross J P J, Meredith N P, Glauert S A, Horne R B, Clilverd M A 2019 J. Geophys. Res. Space Physics 124 5260

    [29]

    Wang Y L, Zhang X M, Shen X H 2018 Earth Planet. Phys. 2 538

    [30]

    Xiang Z, Lin X H, Chen W, Wang Y, Lu P, Gong W Y, Ma W C, Hua M, Liu Y X Z 2021 Chin. J. Geophys. 64 3860 (in Chinese) [项正, 林显浩, 陈薇, 王勇, 陆鹏, 龚文颖, 马文琛, 花漫, 刘阳希子 2021 地球物理学报 64 3860]

    [31]

    Sauvaud J-A, Maggiolo R, Jacquey C, Parrot M, Berthelier J-J, Gamble R J, Rodger C J 2008 Geophys. Res. Lett. 35 L09101

    [32]

    Gamble R J, Rodger C J, Clilverd M A, Sauvaud J-A, Thomson N R, Stewart S L, McCormick R J, Parrot M, Berthelier J-J 2008 J. Geophys. Res. Space Physics 113 A10211

    [33]

    Li X, Ma Y, Wang P, Wang H, Lu H, Zhang X, Huang J, Shi F, Yu X, Xu Y, Meng X, Wang H, Zhao X, Parrot M 2012 J. Geophys. Res. Space Physics 117 A04201

    [34]

    Vampola A L, Kuck G A 1978 J. Geophys. Res. Space Physics 83 2543

    [35]

    Selesnick R S, Albert J M, Starks M J 2013 J. Geophys. Res. Space Physics 118 628

    [36]

    Liu Y, Xiang Z, Ni B, Li X, Zhang K, Fu S, Gu X, Liu J, Cao X 2022 Geophys. Res. Lett. 49 e2021GL097443

    [37]

    Parrot M 2006 Planet. Space Sci. 54 411

    [38]

    Sauvaud J A, Moreau T, Maggiolo R, Treilhou J P, Jacquey C, Cros A, Coutelier J, Rouzaud J, Penou E, Gangloff M 2006 Planet. Space Sci. 54 502

    [39]

    Li X, Schiller Q, Blum L, Califf S, Zhao H, Tu W, Turner D L, Gerhardt D, Palo S, Kanekal S, Baker D N, Fennell J, Blake J B, Looper M, Reeves G D, Spence H 2013 J. Geophys. Res. Space Physics 118 6489

    [40]

    Tu W, Selesnick R, Li X, Looper M 2010 J. Geophys. Res. Space Physics 115 A07210

    [41]

    Hu J, Xiang Z, Ma X, Liu Y, Dong J, Guo D, Ni B 2024 Space Weather 22 e2023SW003827

    [42]

    Zhang K, Li X, Xiang Z, Khoo L Y, Zhao H, Looper M D, Schiller Q, Temerin M A, Sauvaud J A 2020 J. Geophys. Res. Space Physics 125 e2020JA028086

    [43]

    Hu L F, Xiang Z, Gu X D, Ni B B, Zhang X X, Guo J G, Zhang X G, Zhu C B, Guo D Y, Fu S, Liu Y X Z, Dong J H, Zhao Y W 2023 Chin. J. Geophys. 66 2252 (in Chinese) [胡立凡, 项正, 顾旭东, 倪彬彬, 张效信, 郭建广, 张贤国, 朱昌波, 郭德宇, 付松, 刘阳希子, 董俊虎, 赵怡雯 2023 地球物理学报66 2252]

    [44]

    Ni B, Thorne R M, Shprits Y Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106

    [45]

    Ni B, Thorne R M, Meredith N P, Shprits Y Y, Horne R B 2011 J. Geophys. Res. Space Physics 116 A10207

    [46]

    Zhang Z, Chen L, Li X, Xia Z, Heelis R A, Horne R B 2018 J. Geophys. Res. Space Physics 123 5528

    [47]

    Gu W, Chen L, Xia Z, Horne R B 2021 Geophys. Res. Lett. 48 e2021GL093987

    [48]

    Ozhogin P, Tu J, Song P, Reinisch B W 2012 J. Geophys. Res.Space Physics 117 A06225

    [49]

    Liu Y X Z, Xiang Z, Guo J G, Gu X D, Fu S, Zhou R X, Hua M, Zhu Q, Yi J, Ni B B 2021 Acta Phys. Sin. 70 149401 [刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬2021 物理学报70 149401]

    [50]

    Xiang Z, Li X, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2020a J. Geophys. Res. Space Physics 125 e2019JA027678

    [51]

    Li X, Selesnick R, Schiller Q, Zhang K, Zhao H, Baker D N, Temerin M A 2017 Nature 552 382

    [52]

    Xiang Z, Li X, Selesnick R, Temerin M A, Ni B, Zhao H, Zhang K, Khoo L Y 2019 Geophys. Res. Lett. 46 1919

    [53]

    Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020b J. Geophys. Res. Space Physics 125 e2020JA028042

    [54]

    Selesnick R S 2015 J. Geophys. Res. Space Physics 120 2912

    [55]

    Selesnick R S 2012 J. Geophys. Res. Space Physics 117 A08218

    [56]

    Reidy J A, Horne R B, Glauert S A, Clilverd M A, Meredith N P, Rodger C J, Ross J P, Wong J 2024 J. Geophys. Res. Space Physics 129 e2023JA031641

  • [1] Wang Jing-Zhi, Ma Xin, Xiang Zheng, Gu Xu-Dong, Jiao Lu-Huai, Lei Liang-Jian, Ni Bin-Bin. Multi-dimensional modeling of radiation belt electron pitch-angle diffusion coefficients caused by plasmaspheric hiss. Acta Physica Sinica, doi: 10.7498/aps.71.20220655
    [2] Liu Yang-Xi-Zi, Xiang Zheng, Guo Jian-Guang, Gu Xu-Dong, Fu Song, Zhou Ruo-Xian, Hua Man, Zhu Qi, Yi Juan, Ni Bin-Bin. Scattering effect of very low frequency transmitter signals on energetic electrons in Earth’s inner belt and slot region. Acta Physica Sinica, doi: 10.7498/aps.70.20202029
    [3] Yang Ju-Tao, Li Qing-Liang, Wang Jian-Guo, Hao Shu-Ji, Pan Wei-Yan. Theory of very low frequency/extra low frequency radiation by dual-beam beat wave heating ionosphere. Acta Physica Sinica, doi: 10.7498/aps.66.019401
    [4] Luo Xu-Dong, Niu Sheng-Li, Zuo Ying-Hong. Diffusing loss effects of radiation belt energetic electrons caused by typical very low frequency electromagnetic wave. Acta Physica Sinica, doi: 10.7498/aps.64.069401
    [5] Chang Shan-Shan, Ni Bin-Bin, Zhao Zheng-Yu, Wang Feng, Li Jin-Xing, Zhao Jing-Jing, Gu Xu-Dong, Zhou Chen. Test particle simulation of resonant interaction between energetic electrons in the magnetosphere and ELF/VLF waves generated by ionospheric modification. Acta Physica Sinica, doi: 10.7498/aps.63.069401
    [6] Hao Shu-Ji, Li Qing-Liang, Yang Ju-Tao, Wu Zhen-Sen. Theory of ELF/VLF wave directional radiation by modulated heating of ionosphere. Acta Physica Sinica, doi: 10.7498/aps.62.229402
    [7] Gu Xu-Dong, Zhao Zheng-Yu, Ni Bin-Bin, Wang Xiang, Deng Feng. Quasi-linear diffusion of the radiation belt energetic electrons by ground-based HF heater-induced ELF/VLF emissions. Acta Physica Sinica, doi: 10.7498/aps.57.6673
    [8] Ni Bin-Bin, Zhao Zheng-Yu, Gu Xu-Dong, Wang Feng. Resonant diffusion of radiation belt energetic electrons by field-aligned propagation whistler-mode chorus waves. Acta Physica Sinica, doi: 10.7498/aps.57.7937
    [9] Liu Zhi-Ming, Cui Tian, Ma Yan-Ming, Liu Bing-Bing, Zou Guang-Tian. Interactions in Nb2H and its electronic structure. Acta Physica Sinica, doi: 10.7498/aps.56.4877
    [10] Yan Li-Fen, Wang Hong-Cheng, She Wei-Long. Influence of diffusion on the interaction between photovoltaic spatial solitons. Acta Physica Sinica, doi: 10.7498/aps.55.5257
    [11] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, doi: 10.7498/aps.55.2357
    [12] Wei Qing, Wang Qi, Shi Jie-Long, Chen Yuan-Yuan. . Acta Physica Sinica, doi: 10.7498/aps.51.99
    [13] ZHANG CHUN, MA YUN-XHENG, XUN XIN, YE CHENG. ELECTRON INTERACTION AND THE POLARON IN POLYMERS. Acta Physica Sinica, doi: 10.7498/aps.48.917
    [14] ZHAO DONG-HUAN. ANALYSIS OF EFFECTIVE TIME OF INTERACTION BETWEEN ELECTRON AND RADIATIVE WAVE IN THE FEL. Acta Physica Sinica, doi: 10.7498/aps.45.573
    [15] ZHAO DONG-HUAN. INTERACTIONS BETWEEN ELECTRONS WITH WAVES IN THE FEL AND ITS GAIN ANALYSIS. Acta Physica Sinica, doi: 10.7498/aps.43.1447
    [16] SUN XIN, CHEN HONG-YI, WU CHANG-QIN, FU RONG-TANG, FU ROU-LI. MATRIX ELEMENTS OF ELECTRON INTERACTION IN POLYMER. Acta Physica Sinica, doi: 10.7498/aps.40.102
    [17] SUN BO-QIN, YE CHAO-HUI. INHOMOGENEOUS INTERACTIONS OF SOLIDS UNDER MAS. Acta Physica Sinica, doi: 10.7498/aps.35.329
    [18] He Xian-tu. NON-LINEAR EFFECT ON THE LARGE AMPLITUDE WAVES INTERACTION WITH PARTICLES OF LOW FREQUENCY OSCILLATION IN PLASMA. Acta Physica Sinica, doi: 10.7498/aps.31.1317
    [19] YU BAO-SHAN, HU DAI-LIN, SU BIN-LI. THE EFFECT OF INTERMOLECULAR INTERACTION ON THE RAMAN BAND INTENSITY. Acta Physica Sinica, doi: 10.7498/aps.22.714
    [20] ВЗАИМОДЕЙСТВИЕ s-ЭЛЕКТРОНОВ СО СПИНОВЫМИ ВОЛНАМИ В ФЕРРОМАГНЕТИКЕ. Acta Physica Sinica, doi: 10.7498/aps.20.193
Metrics
  • Abstract views:  94
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  07 September 2024

/

返回文章
返回