Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diffusing loss effects of radiation belt energetic electrons caused by typical very low frequency electromagnetic wave

Luo Xu-Dong Niu Sheng-Li Zuo Ying-Hong

Citation:

Diffusing loss effects of radiation belt energetic electrons caused by typical very low frequency electromagnetic wave

Luo Xu-Dong, Niu Sheng-Li, Zuo Ying-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Radiation belt energetic electrons can interact with very low frequency (VLF) electromagnetic wave due to wave-particle resonance; then the particles are imposed to enter into the loss cone and sink to dense atmosphere resulting from changing of its pitch angle. To investigate the diffusion mechanism of interaction of VLF electromagnetic wave with radiation belt energetic electrons, according to quasi-linear diffusion theory, in this paper we use a physical model to calculate diffusion coefficients of Coulomb scatting and wave-particle resonance interaction. Bounce-averaged pitch angle diffusion coefficients of energetic electrons due to the interaction of wave-particle resonance with two groups of VLF electromagnetic waves are obtained. The influence of interaction caused by VLF electromagnetic wave and Coulomb scatting on diffusion of radiation belt energetic electrons for different L shells and various energies are analyzed. Take the case for example, where L equals 2.2 and electron energy E equals 0.5 MeV, the diffusion equation of energetic electrons are solved by using the finite difference method. The time evolutions of precipitation of directional particle flux and omnidirectional particle flux are analyzed. The results show that the resonance interaction caused by VLF electromagnetic wave plays a dominant role when E>0.5 MeV and L>1.6; the higher the L shell or electron energy value, the more significant the high order resonance interaction caused by the oblique propagation VLF electromagnetic wave will be; approximately, the omnidirectional particle flux of radiation belt energetic electrons decreases exponentially with time.
    [1]

    Horne R B, Thorne R M, Shprits Y Y, Meredith N P, Glauert S A, Smith A J, Kanekal S G, Baker D N, Engebretson M J, Posch J L, Spasojevic M, Inan U S, Pickett J S, Decreau P M E 2005 Nature 437 227

    [2]

    Chang S S, Ni B B, Zhao Z Y, Gu X D, Zhou C 2014 Chin. Phys. B 23 089401

    [3]

    Dupont D G 2004 Scientific American 290 100

    [4]

    Graf K L, Inan U S, Piddyachiy D 2009 J. Geophys. Res. 38 114

    [5]

    Kennel C F, Petschek H E 1966 J. Geophys. Res. 7 1

    [6]

    Summers D 2005 J. Geophys. Res. A 110 08213

    [7]

    Shprits Y Y, Thorne R M, Horne R B, Summers D 2006 J. Geophys. Res. A 111 10225

    [8]

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese) [顾旭东, 赵正予, 倪彬彬, 王翔, 邓峰 2008 物理学报 57 6673]

    [9]

    Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2011 Acta Phys. Sin. 60 039401 (in Chinese) [王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2011 物理学报 60 039401]

    [10]

    Zhang Z X, Wang C Y, Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401 (in Chinese) [张振霞, 王辰宇, 李强, 吴书贵 2014 物理学报 63 079401]

    [11]

    Walt M, MacDonald W 1964 Rev. Geophys. 2 543

    [12]

    Schulz M, Lanzerotti L J 1974 Particle Diffusion in the Radiation Belts (New York: Springer-Verlag Press) pp60

    [13]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377

    [14]

    Lyons L R 1974 J. Plasma Phys. 12 417

    [15]

    Walt M 1994 Introduction to Geomagnetically Trapped Radiation (London: Cambridge University Press) pp64, 115

    [16]

    Glauert S A Horne R B 2005 J. Geophys. Res. A 110 04206

    [17]

    Chen F F (Translated by Lin G H) 1980 Introduction to Plasma Physics (Beijing: People's Education Press) p77 (in Chinese) [Chen F F 著 (林光海 译) 1980等离子体物理学导论(北京: 人民教育出版社)第77页]

    [18]

    Lyons L R, Thorne R M, Kennel C F 1971 J. Plasma Phys. 6 589

    [19]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. 77 3455

    [20]

    Niu S L, Luo X D, Wang J G, Qiao D J 2011 Chin. J. Comput. Phys. 28 645 (in Chinese) [牛胜利, 罗旭东, 王建国, 乔登江 2011 计算物理 28 645]

    [21]

    Albert J M, Young S L 2005 Geophys. Res. Ett. 32L 14110

    [22]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [23]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397

    [24]

    Shprits Y, Subbotin D, Ni B B, Horne R, Baker D, Cruce P 2011 Pace Weather 9 S08007

    [25]

    Lu J F, Guan Z 2004 Numerical Methods for Partial Differential Equations (2nd Ed.) (Beijing: Tsinghua University Press) pp83, 109 (in Chinese) [陆金甫, 关冶2004偏微分方程数值解法(第2版) (北京: 清华大学出版社)第83, 109页]

  • [1]

    Horne R B, Thorne R M, Shprits Y Y, Meredith N P, Glauert S A, Smith A J, Kanekal S G, Baker D N, Engebretson M J, Posch J L, Spasojevic M, Inan U S, Pickett J S, Decreau P M E 2005 Nature 437 227

    [2]

    Chang S S, Ni B B, Zhao Z Y, Gu X D, Zhou C 2014 Chin. Phys. B 23 089401

    [3]

    Dupont D G 2004 Scientific American 290 100

    [4]

    Graf K L, Inan U S, Piddyachiy D 2009 J. Geophys. Res. 38 114

    [5]

    Kennel C F, Petschek H E 1966 J. Geophys. Res. 7 1

    [6]

    Summers D 2005 J. Geophys. Res. A 110 08213

    [7]

    Shprits Y Y, Thorne R M, Horne R B, Summers D 2006 J. Geophys. Res. A 111 10225

    [8]

    Gu X D, Zhao Z Y, Ni B B, Wang X, Deng F 2008 Acta Phys. Sin. 57 6673 (in Chinese) [顾旭东, 赵正予, 倪彬彬, 王翔, 邓峰 2008 物理学报 57 6673]

    [9]

    Wang P, Wang H Y, Ma Y Q, Li X Q, Lu H, Meng X C, Zhang J L, Wang H, Shi F, Xu Y B, Yu X X, Zhao X Y, Wu F 2011 Acta Phys. Sin. 60 039401 (in Chinese) [王平, 王焕玉, 马宇蒨, 李新乔, 卢红, 孟祥承, 张吉龙, 王辉, 石峰, 徐岩冰, 于晓霞, 赵小芸, 吴峰 2011 物理学报 60 039401]

    [10]

    Zhang Z X, Wang C Y, Li Q, Wu S G 2014 Acta Phys. Sin. 63 079401 (in Chinese) [张振霞, 王辰宇, 李强, 吴书贵 2014 物理学报 63 079401]

    [11]

    Walt M, MacDonald W 1964 Rev. Geophys. 2 543

    [12]

    Schulz M, Lanzerotti L J 1974 Particle Diffusion in the Radiation Belts (New York: Springer-Verlag Press) pp60

    [13]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377

    [14]

    Lyons L R 1974 J. Plasma Phys. 12 417

    [15]

    Walt M 1994 Introduction to Geomagnetically Trapped Radiation (London: Cambridge University Press) pp64, 115

    [16]

    Glauert S A Horne R B 2005 J. Geophys. Res. A 110 04206

    [17]

    Chen F F (Translated by Lin G H) 1980 Introduction to Plasma Physics (Beijing: People's Education Press) p77 (in Chinese) [Chen F F 著 (林光海 译) 1980等离子体物理学导论(北京: 人民教育出版社)第77页]

    [18]

    Lyons L R, Thorne R M, Kennel C F 1971 J. Plasma Phys. 6 589

    [19]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. 77 3455

    [20]

    Niu S L, Luo X D, Wang J G, Qiao D J 2011 Chin. J. Comput. Phys. 28 645 (in Chinese) [牛胜利, 罗旭东, 王建国, 乔登江 2011 计算物理 28 645]

    [21]

    Albert J M, Young S L 2005 Geophys. Res. Ett. 32L 14110

    [22]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2385

    [23]

    Abel B, Thorne R M 1998 J. Geophys. Res. 103 2397

    [24]

    Shprits Y, Subbotin D, Ni B B, Horne R, Baker D, Cruce P 2011 Pace Weather 9 S08007

    [25]

    Lu J F, Guan Z 2004 Numerical Methods for Partial Differential Equations (2nd Ed.) (Beijing: Tsinghua University Press) pp83, 109 (in Chinese) [陆金甫, 关冶2004偏微分方程数值解法(第2版) (北京: 清华大学出版社)第83, 109页]

  • [1] Li Chen-Pu, Wu Wei-Xia, Zhang Li-Gang, Hu Jin-Jiang, Xie Ge-Ying, Zheng Zhi-Gang. Separation of active chiral particles with different diffusion coefficients. Acta Physica Sinica, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] Ma Ao-Jie, Chen Song-Jia, Li Yu-Xiu, Chen Ying. Molecular dynamics simulation of Brownian diffusion boundary condition for nanoparticles. Acta Physica Sinica, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [4] Li Yang, Song Yong-Shun, Li Ming, Zhou Xin. Simulation studies on the diffusion of water solitons in carbon nanotube. Acta Physica Sinica, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [5] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [6] Meng Wei-Dong, Sun Li-Cun, Zhai Ying, Yang Rui-Fen, Pu Xiao-Yun. Rapid measurement of the diffusion coefficient of liquids using a liquid-core cylindrical lens:a method for analysing an instantaneous diffusive picture. Acta Physica Sinica, 2015, 64(11): 114205. doi: 10.7498/aps.64.114205
    [7] Rao Zhong-Hao, Wang Shuang-Feng, Zhang Yan-Lai, Peng Fei-Fei, Cai Song-Heng. Molecular dynamics simulation of the thermophysical properties of phase change material. Acta Physica Sinica, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [8] Zhang Shou-Yu, Bao Shang-Lian, Kang Xiao-Jian, Gao Song. A new approach to depict anisotropy diffusion of water molecule in vivo. Acta Physica Sinica, 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [9] Li Qiang, Pu Xiao-Yun. Measuring the diffusion coefficient of liquids by capillary imaging method: equivalent refractive index method. Acta Physica Sinica, 2013, 62(9): 094206. doi: 10.7498/aps.62.094206
    [10] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [11] Wang Zhen-Zhong, Wang Nan, Yao Wen-Jing. Effect of low diffusion coefficient on glass phase formation in Pd77Cu6Si17 alloy. Acta Physica Sinica, 2010, 59(10): 7431-7436. doi: 10.7498/aps.59.7431
    [12] Lü Yao-Ping, Gu Guo-Feng, Lu Hua-Chun, Dai Yu, Tang Guo-Ning. Refraction of reaction-diffusion plane wave for different diffusion coefficients. Acta Physica Sinica, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [13] Lu Hong, Qin Li, Bao Jing-Dong. Nonergodicity of Brownian motion in a periodic potential. Acta Physica Sinica, 2009, 58(12): 8127-8133. doi: 10.7498/aps.58.8127
    [14] Li Wan-Wan, Sun Kang. Annealing of Cd0.9Zn0.1Te in cadmium vapor. Acta Physica Sinica, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [15] Zheng Yong-Zhen, Qi Chang-Wei, Ding Xuan-Tong, Lee Wen-Zhong. Internal magnetic fluctuation in the HL-1M tokamak. Acta Physica Sinica, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [16] Zhang La-Bao, Dai Fu-Ping, Xiong Yu-Ying, Wei Bing-Bo. Surface tension of a highly supercooled Ni-15%Sn alloy melt. Acta Physica Sinica, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [17] Li Wan-Wan, Sun Kang. Study on the annealing of Cd1-xZnxTe in In vapor. Acta Physica Sinica, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [18] Yang Jing, Li Jing-Zhen, Sun Xiu-Quan, Gong Xiang-Dong. Simulation of step response of silane low-temperature pasma(1). Acta Physica Sinica, 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [19] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [20] ZHANG XI-QING, ZHAO JIA-LONG, QIN WEI-PING, DOU KAI, HUANG SHI-HUA. MEASUREMENT OF THE AMBIPOLAR DIFFUSION COEFFICIENT USING TIME-DELAYED FOUR-WAVE MIXING WITH INCOHERENT LIGHT. Acta Physica Sinica, 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
Metrics
  • Abstract views:  6195
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2014
  • Accepted Date:  13 October 2014
  • Published Online:  05 March 2015

/

返回文章
返回