-
Transcranial focused ultrasound (tFUS) possesses significant advantages such as non-invasiveness and high tissue penetration depth, making it a promising tool in the field of brain science. Acoustic holographic lenses enable the manipulation of sound fields through phase modulation, providing a low-cost and convenient approach to realize transcranial focusing. Acoustic holographic lenses have been successfully utilized for precise transcranial focusing in live mice to open the blood-brain barrier and for neural modulation, which shows considerable application potential. However, existing transcranial acoustic holographic lenses can only be driven by specific ultrasound frequencies and focus on predetermined locations, which restricts the flexibility in complex applications. To address this issue, this study establishes a multi-frequency transcranial focusing method based on acoustic holographic lenses to enhance its adaptability within the field of tFUS. By integrating acoustic holographic lenses designed for different focal positions at various frequencies, we generate multi-frequency acoustic holographic lenses suitable for transcranial focusing and conduct experiments to evaluate their performance. In simulations, for single-focus tasks, the PSNR of the proposed method achieves 32.16 dB and 40.18 dB under 1 MHz and 2 MHz ultrasound excitation; for multi-focus tasks, the PSNR values are 29.39 dB and 39.89 dB, respectively. In experiments, for single-focus tasks, the PSNR values of the proposed method are 27.48 dB and 32.33 dB under 1 MHz and 2 MHz ultrasound excitation; for multi-focus tasks, the PSNR values are 23.30 dB and 32.17 dB, respectively. These results demonstrate that the multi-frequency transcranial acoustic holographic lens can effectively modulate the sound field under varying ultrasound frequencies and create high-quality focal points at different locations behind the skull, which significantly enhances the application flexibility of transcranial acoustic holographic lenses.
-
Keywords:
- Transcranial ultrasound
-
[1] Landhuis E 2017 Nature 551 257
[2] Zhang M M, Wu Y Y, Yu J, Tu J, Zhang D 2023 Acta Phys. Sin. 72 084301(in Chinese) [张玫玫, 吴意赟, 于洁, 屠娟, 章东2023物理学报72 084301]
[3] Ballantine H, Bell E, Manlapaz J 1960 J. Neurosurg. 17 858
[4] Vykhodtseva N, Hynynen K, Damianou C 1995 Ultrasound Med. Biol. 21 969
[5] Elias W J, Khaled M, Hilliard J D, Aubry J F, Frysinger R C, Sheehan J P, Wintermark M, Lopes M B 2013 J. Neurosurg. 119 307
[6] Zhang Y Y, Li Y F, Shi Q Z, Xu L X, Dai F, Xing W Y, Ta D A 2023 Acta Phys. Sin. 72 154303(in Chinese) [张芸芸, 李义方,石勤振,许乐修,戴菲,邢文宇,他得安2023物理学报72 154303]
[7] Yang Y, Wang C, Li Y, Huang J, Cai F, Xiao Y, Ma T, Zheng H 2019 IEEE Trans. Neural Syst. Rehabil. Eng. 28 361
[8] Tufail Y, Yoshihiro A, Pati S, Li M M, Tyler W J 2011 Nat. Protoc. 6 1453
[9] Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518
[10] Leith E N, Upatnieks J 1962 J. Opt. Soc. Am. 52 1123
[11] Zhong Z, Zhao W T, Shan M G, Liu L 2021 Acta Phys. Sin. 70 154202(in Chinese) [钟志, 赵婉婷, 单明广, 刘磊2021物理学报70154202]
[12] Andrés D, Jiménez-Gambín S, Jiménez N, Camarena F 2020 IEEE International Ultrasonics Symposium Las Vegas, NV, USA, November 17,1999 p1
[13] Jiménez-Gambín S, Jiménez N, Benlloch J M, Camarena F 2019 Phys. Rev. Appl. 12 014016
[14] Shah B R, Lehman V T, Kaufmann T J, Blezek D, Waugh J, Imphean D, Yu F F, Patel T R, Chitnis S, Dewey Jr R B 2020 Brain 143 2664
[15] Yin Y, Yan S, Huang J, Zhang B 2023 Sensors 23 9702
[16] Jiménez-Gambín S, Jiménez N, Pouliopoulos A N, Benlloch J M, Konofagou E E, Camarena F 2021 IEEE Trans. Biomed. Eng. 69 1359
[17] Pouliopoulos A N, Wu S Y, Burgess M T, Karakatsani M E, Kamimura H A, Konofagou E E 2020 Ultrasound Med. Biol. 46 73
[18] Tillander M, Hokland S, Koskela J, Dam H, Andersen N P, Pedersen M, Tanderup K, Ylihautala M, Köhler M 2016 Med. Phys. 43 1539
[19] Treeby B E, Cox B T 2010 J. Biomed. Opt. 15 021314
[20] Mast T D, Souriau L P, Liu D L, Tabei M, Nachman A I, Waag R C 2001 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48 341
[21] Tabei M, Mast T D, Waag R C 2002 J. Acoust. Soc. Am. 111 53
[22] Kook G, Jo Y, Oh C, Liang X, Kim J, Lee S M, Kim S, Choi J W, Lee H J 2023 Microsyst. Nanoeng. 9 45
[23] Treeby B E, Cox B T 2010 J. Acoust. Soc. Am. 127 2741
[24] Thomas J L, Fink M A 1996 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 1122
[25] Aubry J F, Tanter M, Pernot M, Thomas J L, Fink M 2003 J. Acoust. Soc. Am. 113 84
[26] Brown M D, Cox B T, Treeby B E 2017Appl. Phys. Lett. 111244101
[27] He J, Wu J, Zhu Y, Chen Y, Yuan M, Zeng L, Ji X 2021 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 662
[28] Tanchenko A 2014 J. Vis. Commun. Image Represent. 25 874
[29] Bakaric M, Miloro P, Javaherian A, Cox B T, Treeby B E, Brown M D 2021 J. Acoust. Soc. Am. 150 2798
Metrics
- Abstract views: 115
- PDF Downloads: 4
- Cited By: 0