Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sound field optimization and particle trapping of confocal ultrasonic transducer

Di Miao He Xiang Liu Ming-Zhi Yan Shan-Shan Wei Long-Long Tian Ye Yin Guan-Jun Guo Jian-Zhong

Citation:

Sound field optimization and particle trapping of confocal ultrasonic transducer

Di Miao, He Xiang, Liu Ming-Zhi, Yan Shan-Shan, Wei Long-Long, Tian Ye, Yin Guan-Jun, Guo Jian-Zhong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The nonlinear effect of high-intensity sound waves produces the acoustic radiation force (ARF), which are used for acoustic levitation and manipulation practical. With no special requirement for the physical and chemical properties of the controlled objects, acoustic levitation owns a promising application prospect. The common levitation scheme includes the standing-wave system and phased-array levitation system. The standing-wave system has poor performance in the aspects of the degree of spatial freedom, the ARF along the non-axial direction, and the levitation stability. The phased-array system requires a complex control system and a high production cost. Here, we propose a single-side acoustic levitation system based on the paired confocal focused transducers. By driving the transducer pairs with reverse phase mode, two anti-phase focused spherical waves interfere with each other, resulting in constant sound pressure of 0 Pa at the focus. The resulting potential well can achieve stable particle capturing and levitating. First, we verifed the theoretical feasibility of the system according to Huygens' principle. Then, using the finite element method, we analyzed the influences of structural and driving parameters on the sound field distribution, such as the angle between the transducer axis and the central axis of the structure and the excitation phase modes. Finally, we demonstrated the particle trappings under two kinds of excitation phase modes of the levitation system experimentally. The results show that, 1) the intensity of the dominating potential well reaches a strongest value when the structural angle is 45°; 2) as the excitation phases are 0, 0, π, and π, the sound field owns three potential wells which can capture three clusters of quartz sands, the primary potential well is stronger than the secondary one; 3) as the excitation phases are 0, π/2, π, and 3π/2, the sound field owns one potential well and captures one cluster of quartz sands. The isosurface of wave intensity around the potential well is more comprehensive than in the previous phase mode. The four-phase excitation improves the levitation stability better. The proposed levitation scheme can realize stable single- or multi-position capture of high-density objects in the fluid. Moreover, it has the advantages of low cost and a high degree of freedom.
      Corresponding author: Yin Guan-Jun, yinchamp@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004237, 11727813, 12034005, 11904221), the China National Postdoctoral Program for Innovative Talents (Grant No. BX20190193), the China Postdoctoral Science Foundation (Grant Nos. 2020M683416, 2019M663612) and the Young Talent Fund of Association for Science and Technology in Shaanxi, China (Grant No. 20220523).
    [1]

    Stindt A, Andrade M A B, Albrecht M, Adamowski J C, Panne U, Riedel J 2014 Rev. Sci. Instrum. 85 015

    [2]

    Brandt E H 1989 Science 243 349Google Scholar

    [3]

    Li J, Jamieson W D, Dimitriou P, Xu W, Rohde P, Martinac B, Baker M, Drinkwater B W, Castell O K, Barrow D A 2022 Nat. Commun. 13 4125Google Scholar

    [4]

    Tait A, Glynne-Jones P, Hill A R, Smart D E, Blume C, Hammarstrom B, Fisher A L, Grossel M C, Swindle E J, Hill M, Davies D E 2019 Sci. Rep. 9 9789Google Scholar

    [5]

    Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar

    [6]

    Morris R H, Dye E R, Axford D, Newton M I, Beale J H, Docker P T 2019 Sci. Rep. 9 12431Google Scholar

    [7]

    冯乙婷, 姬晓亮, 张永建, Muhammad M M, 臧渡洋 2021 中国科学: 物理学 力学 天文学 5 147Google Scholar

    Feng Y T, Ji X L, Zhang Y J, Muhammad M M, Zang D Y 2021 Sci. Sin-Phys. Mech. Astron. 5 147Google Scholar

    [8]

    张泽辉, 刘康祺, 邸文丽, 陈阵, 臧渡洋 2020 中国科学: 物理学 力学 天文学 50 113Google Scholar

    Zhang Z H, Liu K Q, Di W L, Chen Z, Zang D Y 2020 Sci. Sin-Phys. Mech. Astron. 50 113Google Scholar

    [9]

    Kepa M W, Tomizaki T, Sato Y, Ozerov D, Sekiguchi H, Yasuda N, Aoyama K, Skopintsev P, Standfuss J, Cheng R, Hennig M, Tsujino S 2022 Sci. Rep. 12 5349Google Scholar

    [10]

    Watanabe A, Hasegawa K, Abe Y 2018 Sci. Rep. 8 1

    [11]

    魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊 2020 物理学报 69 184702Google Scholar

    Wei Y J, Zhang J, Deng S C, Zhang Y J, Yang Y J, Liu S H, Chen H 2020 Acta Phys. Sin. 69 184702Google Scholar

    [12]

    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013 PNAS 110 12549Google Scholar

    [13]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 物理学报 66 124301Google Scholar

    Qin X P, Geng D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [14]

    洪振宇, 吕勇军, 解文军, 魏炳波 2006 科学通报 1 2714Google Scholar

    Hong Z Y, Lyu Y J, Xie W J and Wei B B 2006 Chin. Sci. Bull. 1 2714Google Scholar

    [15]

    阮永都, 梁旭 2020 中国科学: 技术科学 50 1226Google Scholar

    Ruan Y D, Liang X 2020 Sci. Sinica Tec. ) 50 1226Google Scholar

    [16]

    Marzo Pérez A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661Google Scholar

    [17]

    Fushimi T, Yamamoto K, Ochiai Y 2021 Sci. Rep. 11 12678Google Scholar

    [18]

    范皓然, 尹冠军, 李盼, 郭建中 2018 声学学报 43 364

    Fan H R,Yin G J, Li P, Guo J Z 2018 Acta Acust. 43 364

    [19]

    Roslyakov S, Emelyanov F, Erzakova N, Sivkov E 2019 IOP Conference 516 012033Google Scholar

    [20]

    Wei L L, Yin G J, Han H, Guo J Z 2021 International Ultrasonics Symposium (IUS) Xi'an, China, November 16, 2021 pp1–4

    [21]

    朱哲民, 龚秀芬, 杜功焕 2012 声学基础(第三版) (南京: 南京大学出版社) 第211—220页

    Zhu Z M, Gong X F, Du G H 2012 Fundamentals of Acoustics (Vol. 3) (Nanjing: Nanjing University Press) pp211–220 (in Chinese)

  • 图 1  两个共焦点聚焦换能器结构

    Figure 1.  Structure of two confocal ultrasound transducers.

    图 2  数值仿真的结构模型和相位模式 (a) 结构模型图; (b) 两相位激励模式; (c) 四相位激励模式

    Figure 2.  Structure model and phase mode in the numerical simulations: (a) Structure model; (b) two-phase excitation model; (c) four-phase excitation model.

    图 3  主势阱声压级峰值随换能器夹角变化图

    Figure 3.  The relationship between the peak value of sound pressure level in the primary potential well and the angle of the transducer.

    图 4  两相位模式的声强切面图 (白色实线圈为主势阱位置, 白色虚线圈为次级势阱位置) (a) x-y截面 (z = 0 mm); (b) y-z截面 (主势阱) (x = 0 mm); (c) y-z截面 (次级势阱) (x = 0.2 mm)

    Figure 4.  Sound intensity of the two-phase model (The white solid coil is the main potential well position, and the white dashed coil is the secondary potential well position): (a) x-y section (z = 0 mm); (b) y-z section (the primary potential well) (x = 0 mm); (c) y-z section (the secondary potential well) (x = 0.2 mm).

    图 5  两相位模式的声强等值面 (白色实线圈为主势阱位置, 白色虚线圈为次级势阱位置) (a) Is = 1.31 kW/m2; (b) Is = 0.53 kW/m2; (c) Is = 0.53 kW/m2

    Figure 5.  Equipotential surface of sound intensity of the two-phase model (The white solid coil is the main potential well, and the white dashed coil is the secondary potential well.): (a) Is = 1.31 kW/m2; (b) Is = 0.53 kW/m2; (c) Is = 0.53 kW/m2.

    图 6  四相位模式的声强切面图(白色实线圈为主势阱位置) (a)x-y截面 (z = 0 mm); (b)y-z截面 (x = 0 mm); (c)x-z截面 (y = 0 mm)

    Figure 6.  Sound intensity of the four-phase model (The white solid coil is the main potential well): (a) x-y section (z = 0 mm); (b) y-z section (x = 0 mm); (c) x-z section (y = 0 mm).

    图 7  四相位模式的声强等值面图 (a) Is = 3.0 kW/m2; (b) Is = 1.2 kW/m2; (c) Is = 1.2 kW/m2

    Figure 7.  Equipotential surface of sound intensity of the four-phase model: (a) Is = 3.0 kW/m2; (b) Is = 1.2 kW/m2; (c) Is = 1.2 kW/m2

    图 8  实验设置

    Figure 8.  Experimental settings.

    图 9  实验结果图 (a)两相位模式结果; (b)四相位模式结果

    Figure 9.  Picture of experimental results: (a) Result of two-phase model; (b) result of four-phase model.

  • [1]

    Stindt A, Andrade M A B, Albrecht M, Adamowski J C, Panne U, Riedel J 2014 Rev. Sci. Instrum. 85 015

    [2]

    Brandt E H 1989 Science 243 349Google Scholar

    [3]

    Li J, Jamieson W D, Dimitriou P, Xu W, Rohde P, Martinac B, Baker M, Drinkwater B W, Castell O K, Barrow D A 2022 Nat. Commun. 13 4125Google Scholar

    [4]

    Tait A, Glynne-Jones P, Hill A R, Smart D E, Blume C, Hammarstrom B, Fisher A L, Grossel M C, Swindle E J, Hill M, Davies D E 2019 Sci. Rep. 9 9789Google Scholar

    [5]

    Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar

    [6]

    Morris R H, Dye E R, Axford D, Newton M I, Beale J H, Docker P T 2019 Sci. Rep. 9 12431Google Scholar

    [7]

    冯乙婷, 姬晓亮, 张永建, Muhammad M M, 臧渡洋 2021 中国科学: 物理学 力学 天文学 5 147Google Scholar

    Feng Y T, Ji X L, Zhang Y J, Muhammad M M, Zang D Y 2021 Sci. Sin-Phys. Mech. Astron. 5 147Google Scholar

    [8]

    张泽辉, 刘康祺, 邸文丽, 陈阵, 臧渡洋 2020 中国科学: 物理学 力学 天文学 50 113Google Scholar

    Zhang Z H, Liu K Q, Di W L, Chen Z, Zang D Y 2020 Sci. Sin-Phys. Mech. Astron. 50 113Google Scholar

    [9]

    Kepa M W, Tomizaki T, Sato Y, Ozerov D, Sekiguchi H, Yasuda N, Aoyama K, Skopintsev P, Standfuss J, Cheng R, Hennig M, Tsujino S 2022 Sci. Rep. 12 5349Google Scholar

    [10]

    Watanabe A, Hasegawa K, Abe Y 2018 Sci. Rep. 8 1

    [11]

    魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊 2020 物理学报 69 184702Google Scholar

    Wei Y J, Zhang J, Deng S C, Zhang Y J, Yang Y J, Liu S H, Chen H 2020 Acta Phys. Sin. 69 184702Google Scholar

    [12]

    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013 PNAS 110 12549Google Scholar

    [13]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 物理学报 66 124301Google Scholar

    Qin X P, Geng D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [14]

    洪振宇, 吕勇军, 解文军, 魏炳波 2006 科学通报 1 2714Google Scholar

    Hong Z Y, Lyu Y J, Xie W J and Wei B B 2006 Chin. Sci. Bull. 1 2714Google Scholar

    [15]

    阮永都, 梁旭 2020 中国科学: 技术科学 50 1226Google Scholar

    Ruan Y D, Liang X 2020 Sci. Sinica Tec. ) 50 1226Google Scholar

    [16]

    Marzo Pérez A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661Google Scholar

    [17]

    Fushimi T, Yamamoto K, Ochiai Y 2021 Sci. Rep. 11 12678Google Scholar

    [18]

    范皓然, 尹冠军, 李盼, 郭建中 2018 声学学报 43 364

    Fan H R,Yin G J, Li P, Guo J Z 2018 Acta Acust. 43 364

    [19]

    Roslyakov S, Emelyanov F, Erzakova N, Sivkov E 2019 IOP Conference 516 012033Google Scholar

    [20]

    Wei L L, Yin G J, Han H, Guo J Z 2021 International Ultrasonics Symposium (IUS) Xi'an, China, November 16, 2021 pp1–4

    [21]

    朱哲民, 龚秀芬, 杜功焕 2012 声学基础(第三版) (南京: 南京大学出版社) 第211—220页

    Zhu Z M, Gong X F, Du G H 2012 Fundamentals of Acoustics (Vol. 3) (Nanjing: Nanjing University Press) pp211–220 (in Chinese)

  • [1] LIN Jiyan, LI Yao, CHEN Cheng, LIU Weidong, LIN Shuyu, GUO Linwei, XU Jie. Research on surface and defect controlled high power piezoelectric ultrasonic transducers. Acta Physica Sinica, 2025, 74(9): 094301. doi: 10.7498/aps.74.20250047
    [2] WANG Yi, CHEN Cheng, LIN Shuyu. An ultrasonic transducer for vibration mode conversion of wedge-shaped structure of acoustic black hole. Acta Physica Sinica, 2025, 74(4): 044303. doi: 10.7498/aps.74.20241326
    [3] Lin Ji-Yan, Lin Shu-Yu. Large-scale piezoelectric ultrasonic transducers with tubular near-period phononic crystal point defect structure. Acta Physica Sinica, 2023, 72(9): 094301. doi: 10.7498/aps.72.20230195
    [4] Chen Cong, Zhang Ruo-Qin, Li Feng, Li Zhi-Yuan. Experimental study on levitation control of particles and liquid droplets by vortex acoustic field enhanced by subwavelength pipe. Acta Physica Sinica, 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [5] Li Xin-Peng, Cao Rui-Jie, Li Ming, Guo Ge-Pu, Li Yu-Zhi, Ma Qing-Yu. Super-resolution acoustic focusing based on the particle swarm optimization of super-oscillation. Acta Physica Sinica, 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [6] Qian Jun, Xie Wei, Zhou Xiao-Wei, Tan Jian-Wen, Wang Zhi-Biao, Du Yong-Hong, Li Yan-Hao. Real-time monitoring of high intensity focused ultrasound focal damage based on transducer driving signal. Acta Physica Sinica, 2022, 71(3): 037201. doi: 10.7498/aps.71.20211443
    [7] Di Miao,  He Xiang,  Liu Ming-Zhi,  Yan Shan-Shan,  Wei Long-Long,  Tian Ye,  Yin Guan-Jun,  Guo Jian-Zhong. Sound field construction and particle trapping based on confocal transducer pairs. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221547
    [8] Wu Xue-You, Liang Jin-Fu. Translation and nonspherical oscillation of single bubble in ultrasound field. Acta Physica Sinica, 2021, 70(18): 184301. doi: 10.7498/aps.70.20210513
    [9] Wei Yan-Ju, Zhang Jie, Deng Sheng-Cai, Zhang Ya-Jie, Yang Ya-Jing, Liu Sheng-Hua, Chen Hao. Phenomenon study on heat induced atomization of acoustic levitated methanol droplet. Acta Physica Sinica, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [10] Feng Kang-Yi, Wang Cheng-Hui. Effect of micro-bubble in ultrasonic field on microstreaming of elastic particle. Acta Physica Sinica, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [11] Qin Xiu-Pei, Geng De-Lu, Hong Zhen-Yu, Wei Bing-Bo. Rotation mechanism of ultrasonically levitated cylinders. Acta Physica Sinica, 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [12] Zheng Li, Guo Jian-Zhong. A controllable circular ring acoustic focused field. Acta Physica Sinica, 2016, 65(4): 044305. doi: 10.7498/aps.65.044305
    [13] Sun Jian-Ming, Yu Jie, Guo Xia-Sheng, Zhang Dong. Study of nonlinear acoustic field of high intensity focused ultrasound by the fractional wave. Acta Physica Sinica, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [14] Ding Ya-Jun, Qian Sheng-You, Hu Ji-Wen, Zou Xiao. Optimization of phased array ultrasonic field in multi-medium. Acta Physica Sinica, 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [15] Xu Xiao-Hui, Li Hui. Scanning photoacoustic mammography with a focused transducer featuring extended focal zone. Acta Physica Sinica, 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [16] Yu Jie, Zhang Dong, Liu Xiao-Zhou, Gong Xiu-Fen, Song Fu-Xian. Theoretical and experimental study of the nonlinear ultrasonic field radiated from a conical focused PVDF transducer. Acta Physica Sinica, 2007, 56(10): 5909-5914. doi: 10.7498/aps.56.5909
    [17] Xue Hong-Hui, Liu Xiao-Zhou, Gong Xiu-Fen, Zhang Dong. Theoretical and experimental research on the second harmonic of focused ultrasound in layered biological media. Acta Physica Sinica, 2005, 54(11): 5233-5238. doi: 10.7498/aps.54.5233
    [18] YING CHONG-FU, LI MING-XIAN, ZHONG GAO-QI, LIU XIAN-DUO, YANG YU-RUI. A SCHEME TO CONTROL THE FIRST-SECOND CYCLE AMPLITUDE RATIO OF TRANSDUCERS FOR ULTRASONIC MEASUREMENTS. Acta Physica Sinica, 1981, 30(1): 91-96. doi: 10.7498/aps.30.91
    [19] YAN REN-BO. DIRECTIVITY PATTERNS OF ANGLE PROBES FOR ULTRASONIC BULK WAVES AND SURFACE WAVES. Acta Physica Sinica, 1974, 23(6): 41-50. doi: 10.7498/aps.23.41
    [20] WEI YUNG-CHIO, CHANG SHU-I. ULTRASONIC ABSORPTION IN AQUEOUS SUSPENSIONS. Acta Physica Sinica, 1965, 21(5): 1061-1074. doi: 10.7498/aps.21.1061
Metrics
  • Abstract views:  5504
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2022
  • Accepted Date:  22 September 2022
  • Available Online:  24 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回