Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Super-resolution acoustic focusing based on the particle swarm optimization of super-oscillation

Li Xin-Peng Cao Rui-Jie Li Ming Guo Ge-Pu Li Yu-Zhi Ma Qing-Yu

Citation:

Super-resolution acoustic focusing based on the particle swarm optimization of super-oscillation

Li Xin-Peng, Cao Rui-Jie, Li Ming, Guo Ge-Pu, Li Yu-Zhi, Ma Qing-Yu
PDF
HTML
Get Citation
  • The spatial resolution of conventional waves is restricted by the diffraction limit of half wavelength. Hence, how to construct super-resolution acoustic beams with a smaller focal radius is one of the major challenges in recent studies. In the present paper, the super-resolution acoustic focusing method is proposed based on the superposition of multi-frequency super-oscillation beams and the Particle Swarm Optimization (PSO), which can improve the spatial resolution concurrently with good controllability. Based on the diffraction effect of traditional ultrasound fields, the acoustic lens of Fresnel zone plane (FZP) at the center frequency is designed by the half-wave zone method. Multiple acoustic beams at several preset frequencies within the transducer bandwidth are sent out to build the super-oscillation focal area by the pressure superposition. The radius of the super-resolution focal spot constructed by the PSO algorithm with optimized amplitudes and phases is less than the half wavelength at the center frequency, which is even smaller than the focal radius at the highest frequency. Furthermore, the focal radius is also proved to decrease with the increase of the number of multiple frequencies and the center frequency. The favorable results demonstrate the feasibility of super-resolution acoustic focusing based on the PSO of super-oscillation, and provide an applicable strategy for the high-resolution acoustic imaging and manipulation.
      Corresponding author: Ma Qing-Yu, maqingyu@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934009, 11974187, 12174198).
    [1]

    Gettle L M, Revzin M V 2020 Radiol. Clin. North. Am. 58 653Google Scholar

    [2]

    Chen Q Y, Song H J, Yu J, Kim K 2021 Sensors (Basel). 21 2417Google Scholar

    [3]

    Liu Y L, L Liu J H, Ai K, Yuan Q H, Lu L H 2014 Contrast Media Mol. Imaging 9 26Google Scholar

    [4]

    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M 2002 Neuroimage. 15 273Google Scholar

    [5]

    Boellaard R, O’Doherty M J, Chiti A 2010 Eur. J. Nucl. Med. Mol. Imaging 37 181Google Scholar

    [6]

    Kim K, Chen Q Y, Yu J 2019 J. Acoust. Soc. Am. 145 1703Google Scholar

    [7]

    Lin F L, Tsuruta J K, Rojas J D, Dayton P A 2017 Ultrasound Med. Biol. 43 2488Google Scholar

    [8]

    Soulioti D E, Espindola D, Dayton P A, Pinton G F 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 25Google Scholar

    [9]

    丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta. Phys. Sin. 67 194301Google Scholar

    [10]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [11]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52Google Scholar

    [12]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 124909Google Scholar

    [13]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [14]

    Yuan B G, Liu J Y, Liu C, Cheng Y, Liu X J 2021 Appl. Acoust. 178 107993Google Scholar

    [15]

    董永康, 王培峰, 郁高坤 2018 声学技术 37 146

    Dong Y K, Wang P F, Yu G K 2018 Tech. Acoust. 37 146

    [16]

    Berry M V, Popescu S 2006 J. Phys. A: Math. Gen. 39 6965Google Scholar

    [17]

    Shen Y X, Peng Y G, Cai F Y, Huang K, Zhao D G, Qiu C W, Zheng H R, Zhu X F 2019 Nat. Commun. 10 3411Google Scholar

    [18]

    Hashimoto H, Tanaka S, Sato K 1991 TRANSDUCERS '91 International Conference on Solid-State Sensors and Actuators San Francisco CA, USA, June 24–27, 1991 p853

    [19]

    Ellens N P K, Lucht B B C, Gunaseelan S T, Hudson J M, Hynynen K H 2015 Phys. Med. Biol. 60 2195Google Scholar

    [20]

    Yamada K, Shimizu H 1985 IEEE 1985 Ultrasonics Symposium San Francisco, USA, Oct 16–18, 1985 p745

    [21]

    Zhao J J, Ye H P, Huang K, Chen Z N, Li B, Qiu C W 2014 Sci. Rep. 4 6257Google Scholar

    [22]

    Huang F M, Chen Y F, de Abajo F J G, Zheludev N I 2007 J. Opt. A:Pure. Appl. Opt. 9 S285Google Scholar

    [23]

    Dennis M R, Hamilton A C, Courtial J 2008 Opt. Lett. 33 2976Google Scholar

    [24]

    Venkatesh S S, Mishra D 2021 Int. J. Intell. Syst. 30 142Google Scholar

    [25]

    Sabat S L, Ali L, Udgata S K 2011 Appl. Soft. Comput. 11 574Google Scholar

    [26]

    Xu G, Liu B B, Song J, Xiao S J, Wu A J 2019 Nat. Comput. 18 313Google Scholar

    [27]

    Li C X, Wang J J, Ma Z H, Li B, Kang K, Wei L, Zhang W 2020 World J. Surg. Oncol. 18 103Google Scholar

    [28]

    Zhang J B, Li N, Dong F H, Liang S Y, Wang D, An J, Long Y F, Wang Y X, Luo Y K, Zhang J 2020 J. Ultrasound Med. 39 1507Google Scholar

  • 图 1  基于菲涅耳声透镜的声场聚焦示意图

    Figure 1.  Sketch map of the acoustic focusing based on the acoustic lens of Fresnel zone plane.

    图 2  基于多频超振荡的超分辨声场焦域的径向声压分布示意图

    Figure 2.  Schematic diagram of the radial pressure distributions in the focal plane for the super-resolution acoustic focusing based on the multi-frequency super-oscillation.

    图 3  粒子群算法流程图

    Figure 3.  Flow chart of the Particle Swarm Optimization algorithm.

    图 4  中心频率1.0 MHz的菲涅耳透镜所形成聚焦声场的归一化焦域半径($ r/\lambda $)和焦距(F )的关系

    Figure 4.  Relationship between the normalized focal radius ($ r/\lambda $) and the focal length (F ) for the Fresnel lens at the center frequency of 1.0 MHz.

    图 5  频率0.6—1.4 MHz多频声束经过F = 50 mm的菲涅耳透镜形成聚焦声场的轴向声压剖面分布

    Figure 5.  Axial pressure profiles focused by the Fresnel lens (F = 50 mm) for acoustic beams at the frequencies of 0.6–1.4 MHz.

    图 6  频率0.6—1.4 MHz多频声束经过F = 40 mm的菲涅耳透镜所形成聚焦声场的轴向声压剖面分布

    Figure 6.  Axial pressure profiles focused by the Fresnel lens (F = 40 mm) for acoustic beams at the frequencies of 0.6–1.4 MHz.

    图 7  频率0.6—1.4 MHz多频声束经过F = 30 mm的菲涅耳透镜所形成聚焦声场的轴向声压剖面分布

    Figure 7.  Axial pressure profiles focused by the Fresnel lens (F = 30 mm) for acoustic beams at the frequencies of 0.6–1.4 MHz.

    图 8  (a1)—(a3) 多频声束经过F = 50, 40, 30 mm的三种菲涅耳透镜所构建超振荡聚焦声场的轴向剖面声压分布(b1)—(b3)相应的粒子群算法的迭代优化过程

    Figure 8.  (a1)–(a3) Axial pressure profiles of super-oscillation super-resolution acoustic fields; (b1)–(b3) the corresponding iteration processes of the PSO for three kinds of Fresnel lenses with F = 50, 40 and 30 mm.

    图 9  超振荡声场的焦域半径与(a)多频声束频率数和(b)中心频率的关系, 以及(c)三种聚焦声场焦平面内的径向声压分布

    Figure 9.  Distributions of the focal radius of the super-oscillation acoustic field with respect to (a) the number of multiple frequencies and (b) the center frequency, and (c) the radial pressure distributions in the focal plane for three acoustic fields.

    图 10  中心频率1.0 MHz, 相对带宽分别为 (a) 20%, (b) 40%, (c) 60% 和 (d) 80%的多频声束经F = 50 mm的菲涅耳透镜所构建超振荡声场的轴向声压分布

    Figure 10.  Axial pressure profiles of super-oscillation acoustic fields formed by the Fresnel lens with F = 50 mm for multi-frequency beams with the relative bandwidths of (a) 20%, (b) 40%, (c) 60%, and (d) 80% at the center frequency of 1.0 MHz.

    表 1  粒子群算法优化后所得的参数

    Table 1.  Parameters optimized by the PSO algorithm.

    频率 菲涅耳透镜的焦距
    f/MHz50 mm40 mm30 mm
    0.6$\rm 2.68{e^{ - j0.958}} $$\rm 2.86{e^{j0.834}} $$\rm 9.38{e^{j{\text{0.396}}}} $
    0.7$\rm 2.48{e^{ - j2.122}} $$\rm 1.25{e^{ - j1.45}} $$\rm 9.13{e^{j{\text{0.706}}}} $
    0.8$\rm 5.26{e^{ - j2.646}} $$\rm 1.93{e^{j1.470}} $$\rm 4.91{e^{j{\text{0.274}}}} $
    0.9$\rm 6.34{e^{j1.448}} $$\rm3.54{e^{j0.020}} $$\rm7.49{e^{j1.366}} $
    1.0$\rm 5.25{e^{ - j2.652}} $$\rm 3.27{e^{ - j0.685}} $$\rm 8.52{e^{ - j{\text{0.465}}}} $
    1.1$\rm 1.95{e^{ - j0.082}} $$\rm2.10{e^{ - j1.221}} $$\rm5.89{e^{j{\text{0.879}}}} $
    1.2$\rm 4.11{e^{j0.725}} $$\rm 1.59{e^{ - j1.905}} $$\rm 0.57{e^{j{\text{0.493}}}} $
    1.3$\rm 4.82{e^{j2.031}} $$\rm 2.43{e^{j1.160}} $$\rm 4.16{e^{j{\text{0.684}}}} $
    1.4$\rm 5.34{e^{ - j2.808}} $$\rm 1.67{e^{j1.022}} $$\rm 6.56{e^{ - j{\text{0.299}}}} $
    DownLoad: CSV

    表 2  不同频率声束和超振荡声场的焦域半径和实际焦距

    Table 2.  Focal radii and focal lengths for the focused beams at different frequencies and the super-oscillation field.

    频率菲涅耳透镜焦距
    f/MHz 50 mm40 mm30 mm
    r/$ \lambda $F/mm r/$ \lambda $F/mm r/$ \lambda $F/mm
    0.60.9122.6 0.8719.50.8212.2
    0.7 0.8228.70.7921.40.7516.9
    0.80.7333.90.5622.50.6920.8
    0.90.7241.30.6733.20.5824.1
    1.00.7150.00.6540.00.5830.0
    1.10.6856.90.6346.80.5635.8
    1.20.6765.20.6353.30.5541.3
    1.30.6572.60.6059.60.5150.5
    1.40.6578.90.5865.90.5055.9
    超振荡0.4949.50.4740.00.4430.0
    DownLoad: CSV

    表 3  多频声束经不同焦距的菲涅耳透镜后所形成的声场的焦域半径

    Table 3.  Focal radii for Fresnel lenses with different focal lengths.

    菲涅耳透镜焦距焦平面内的最小焦域半径
    F /mmr / λ
    200.40
    300.44
    400.47
    500.49
    600.51
    700.54
    DownLoad: CSV
  • [1]

    Gettle L M, Revzin M V 2020 Radiol. Clin. North. Am. 58 653Google Scholar

    [2]

    Chen Q Y, Song H J, Yu J, Kim K 2021 Sensors (Basel). 21 2417Google Scholar

    [3]

    Liu Y L, L Liu J H, Ai K, Yuan Q H, Lu L H 2014 Contrast Media Mol. Imaging 9 26Google Scholar

    [4]

    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M 2002 Neuroimage. 15 273Google Scholar

    [5]

    Boellaard R, O’Doherty M J, Chiti A 2010 Eur. J. Nucl. Med. Mol. Imaging 37 181Google Scholar

    [6]

    Kim K, Chen Q Y, Yu J 2019 J. Acoust. Soc. Am. 145 1703Google Scholar

    [7]

    Lin F L, Tsuruta J K, Rojas J D, Dayton P A 2017 Ultrasound Med. Biol. 43 2488Google Scholar

    [8]

    Soulioti D E, Espindola D, Dayton P A, Pinton G F 2020 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67 25Google Scholar

    [9]

    丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta. Phys. Sin. 67 194301Google Scholar

    [10]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [11]

    Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F J 2011 Nat. Phys. 7 52Google Scholar

    [12]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 124909Google Scholar

    [13]

    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar

    [14]

    Yuan B G, Liu J Y, Liu C, Cheng Y, Liu X J 2021 Appl. Acoust. 178 107993Google Scholar

    [15]

    董永康, 王培峰, 郁高坤 2018 声学技术 37 146

    Dong Y K, Wang P F, Yu G K 2018 Tech. Acoust. 37 146

    [16]

    Berry M V, Popescu S 2006 J. Phys. A: Math. Gen. 39 6965Google Scholar

    [17]

    Shen Y X, Peng Y G, Cai F Y, Huang K, Zhao D G, Qiu C W, Zheng H R, Zhu X F 2019 Nat. Commun. 10 3411Google Scholar

    [18]

    Hashimoto H, Tanaka S, Sato K 1991 TRANSDUCERS '91 International Conference on Solid-State Sensors and Actuators San Francisco CA, USA, June 24–27, 1991 p853

    [19]

    Ellens N P K, Lucht B B C, Gunaseelan S T, Hudson J M, Hynynen K H 2015 Phys. Med. Biol. 60 2195Google Scholar

    [20]

    Yamada K, Shimizu H 1985 IEEE 1985 Ultrasonics Symposium San Francisco, USA, Oct 16–18, 1985 p745

    [21]

    Zhao J J, Ye H P, Huang K, Chen Z N, Li B, Qiu C W 2014 Sci. Rep. 4 6257Google Scholar

    [22]

    Huang F M, Chen Y F, de Abajo F J G, Zheludev N I 2007 J. Opt. A:Pure. Appl. Opt. 9 S285Google Scholar

    [23]

    Dennis M R, Hamilton A C, Courtial J 2008 Opt. Lett. 33 2976Google Scholar

    [24]

    Venkatesh S S, Mishra D 2021 Int. J. Intell. Syst. 30 142Google Scholar

    [25]

    Sabat S L, Ali L, Udgata S K 2011 Appl. Soft. Comput. 11 574Google Scholar

    [26]

    Xu G, Liu B B, Song J, Xiao S J, Wu A J 2019 Nat. Comput. 18 313Google Scholar

    [27]

    Li C X, Wang J J, Ma Z H, Li B, Kang K, Wei L, Zhang W 2020 World J. Surg. Oncol. 18 103Google Scholar

    [28]

    Zhang J B, Li N, Dong F H, Liang S Y, Wang D, An J, Long Y F, Wang Y X, Luo Y K, Zhang J 2020 J. Ultrasound Med. 39 1507Google Scholar

  • [1] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Improved parameter optimization method for measurement device independent protocol. Acta Physica Sinica, 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [2] Wang Jian, Zhang Chao-Yue, Yao Zhao-Yu, Zhang Chi, Xu Feng, Yang Yuan. A method of rapidly designing graphene-based terahertz diffusion surface. Acta Physica Sinica, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [3] Li Ming-Fei, Yuan Zi-Hao, Liu Yuan-Xing, Deng Yi-Cheng, Wang Xue-Feng. Comparison between optimal configuration algorithms of fiber phased array. Acta Physica Sinica, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [4] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] Chao Xing-Bing, Pan Lu-Ping, Wang Zi-Sheng, Yang Feng-Tao, Ding Jian-Ping. Influence of pixelation effect of image sensor on resolution of Fresnel incoherent correlation holography. Acta Physica Sinica, 2019, 68(6): 064203. doi: 10.7498/aps.68.20181844
    [6] Chen Gang, Wen Zhong-Quan, Wu Zhi-Xiang. Optical super-oscillation and super-oscillatory optical devices. Acta Physica Sinica, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [7] Lu Wen-Long, Xie Jun-Wei, Wang He-Ming, Sheng Chuan. Signal component extraction method based on polynomial chirp Fourier transform. Acta Physica Sinica, 2016, 65(8): 080202. doi: 10.7498/aps.65.080202
    [8] Lian Rong-Hai, Liang Qi-Bing, Shu Bi-Fen, Fan Chou, Wu Xiao-Long, Guo Yin, Wang Jing, Yang Qing-Chuan. Performance and optimization research of triple-junction solar cell along the optical axis direction on \text{the HCPV module}. Acta Physica Sinica, 2016, 65(14): 148801. doi: 10.7498/aps.65.148801
    [9] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [10] Xing Hong-Yan, Zhang Qiang, Xu Wei. Hybrid algorithm for weak signal detection in chaotic sea clutter. Acta Physica Sinica, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [11] Chen Ying, Wang Wen-Yue, Yu Na. Improvement of the filtering performance of a heterostructure photonic crystal ring resonator using PSO algorithm. Acta Physica Sinica, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [12] Liu Rui-Lan, Wang Xu-Liang, Tang Chao. Identification for hole transporting properties of NPB based on particle swarm optimization algorithm. Acta Physica Sinica, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [13] Liu Tun-Dong, Chen Jun-Ren, Hong Wu-Peng, Shao Gui-Fang, Wang Ting-Na, Zheng Ji-Wen, Wen Yu-Hua. Particle swarm optimization investigation of stable structures of Pt-Pd alloy nanoparticles. Acta Physica Sinica, 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [14] Zheng Shi-Lian, Yang Xiao-Niu. Parameter adaptation in green cognitive radio. Acta Physica Sinica, 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [15] Wang Xiao-Fang, Wang Jing-Yu. Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate. Acta Physica Sinica, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [16] Long Wen, Jiao Jian-Jun, Long Zu-Qiang. Control of chaos solely based on PSO-LSSVM without usiing an analytical model. Acta Physica Sinica, 2011, 60(11): 110506. doi: 10.7498/aps.60.110506
    [17] Zhao Zhi-Jin, Xu Shi-Yu, Zheng Shi-Lian, Yang Xiao-Niu. Cognitive radio decision engine based on binary particle swarm optimization. Acta Physica Sinica, 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [18] Wang Xiao-Feng, Xue Hong-Jun, Si Shou-Kui, Yao Yue-Ting. Mixture control of chaotic system using particle swarm optimization algorithms and OGY method. Acta Physica Sinica, 2009, 58(6): 3729-3733. doi: 10.7498/aps.58.3729
    [19] Dong Jian-Jun, Cao Lei-Feng, Chen Ming, Xie Chang-Qing, Du Hua-Bing. Study on the focus performance of micro-focus Fresnel zone plate. Acta Physica Sinica, 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [20] WU JIN-YUAN, WANG CHENG-HAO, HE QI-GUANG. FOCUSING AND SCANNING PROPERTIES OF ACOUSTIC BEAM IN SOLID USING A FRESNEL ARRAY. Acta Physica Sinica, 1988, 37(10): 1575-1584. doi: 10.7498/aps.37.1575
Metrics
  • Abstract views:  4118
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2022
  • Accepted Date:  10 June 2022
  • Available Online:  14 October 2022
  • Published Online:  20 October 2022

/

返回文章
返回