搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多项式调频Fourier变换的信号分量提取方法

路文龙 谢军伟 王和明 盛川

引用本文:
Citation:

基于多项式调频Fourier变换的信号分量提取方法

路文龙, 谢军伟, 王和明, 盛川

Signal component extraction method based on polynomial chirp Fourier transform

Lu Wen-Long, Xie Jun-Wei, Wang He-Ming, Sheng Chuan
PDF
导出引用
  • 为了从含有噪声的混合信号中有效提取各个信号分量, 提出一种基于多项式调频Fourier变换的分量提取方法. 通过研究Fourier变换和分数阶Fourier变换的信号能量积累方式及变换基函数的时频表示, 提出利用时频平面上的多项式调频曲线族代替Fourier变换和分数阶Fourier 变换的调频直线族, 将变换的适用范围扩展到非线性调频信号. 采用粒子群智能优化算法搜索调频曲线族的最优多项式参数, 使混合信号中的某一分量在多项式调频Fourier域上能量谱集中. 最后对能量谱集中的分量进行窄带滤波, 并利用多项式调频逆Fourier变换重构信号分量. 仿真实验结果表明, 该方法不仅能够提取混合信号中的线性调频分量, 还能够实现非线性调频分量的能量谱集中、信号分离和时频特征提取.
    As frequency modulated (FM) signals widely exist in the natural world as well as in different artificial applications, it is of great practical significance to explore the ways to extract such signal components in the complex and noisy environment. To extract one component from the noisy multicomponent signal effectively, a component extraction method based on polynomial chirp Fourier transform (PCFT) is presented in this paper. First, the physical meanings of Fourier transform (FT) and fractional Fourier transform (FRFT) are analyzed and their internal relations are expounded from the perspective of signal energy accumulation. Essentially, the FT accumulates signal energy along the time-frequency beelines parallel to the time axis and obtains an energy-concentrated spectrum from the narrow-band stationary signals whose frequency does not change, whereas it fails to process non-stationary signals with changeable frequencies. By rotating the time-frequency axis, the FRFT changes the energy accumulation mode of the signal in the old time-frequency plane and achieves a more concentrated spectrum for the linear frequency modulated (LFM) signal, but with larger error or even invalidation when dealing with nonlinear frequency modulated (NLFM) signal. Using FT and FRFT, in this paper we attempt to improve the energy accumulation mode of the conventional transform method and propose the PCFT. In this transform, the beeline families in the traditional transform, independent of time (or v) axes, are replaced by a family of polynomial chirping curves in the time-frequency plane. These polynomial chirping curves are capable of approaching more closely to the instantaneous frequency curve of FM signal so as to obtain a more concentrated transform spectrum and thereby extend the application of PCFT from LFM signal to NLFM signal. When selecting the polynomial chirping curve, we build up a nonlinear optimization model guided by the principle of energy spectrum concentration and in this way convert the problem of determining the polynomial curve families into the one of optimizing the polynomial parameters. Then particle swarm optimization algorithm is employed to search for the optimal polynomial parameters so as to concentrate the energy of one component in the new transform domain, i.e., the polynomial chirp Fourier domain. After doing that, each component is separated into its concentrated spectrum with a narrow-band filter and reconstructed with the inverse PCFT. Moreover, to extract components from a noisy multicomponent signal successfully, an iteration involving parameter estimation, PCFT, filter and recovery is introduced. To verify the effectiveness of the PCFT-based method, a series of examples, including simulated and real-world signals, is chosen for simulations and experiments. The experimental results indicate that compared with FT and FRFT, the proposed method overcomes the shortcoming of distributed energy spectrum for NLFM components in the traditional transforms and obtains a concentrated energy spectrum in the polynomial chirp Fourier domain, therefore realizing component separation and time-frequency characteristic extraction. The PCFT-based method not only has the capability of dealing with the extraction of LFM components, but also performs well in the separation of crossed NLFM components, and with little extraction error.
      Corresponding author: Lu Wen-Long, youranqixia521@126.com
    [1]

    Ba J 2010 Sci. Sin: Phys. Mech. Astron. 40 1398 (in Chinese) [巴晶 2010 中国科学: 物理学 力学 天文学 40 1398]

    [2]

    Liu X Y, Pei L Q, Wang Y, Zhang S M, Gao H L, Dai Y D 2011 Chin. Phys. B 20 047401

    [3]

    Dugnol B, Fernandez C, Galiano G, Velasco J 2008 Signal Process. 88 1817

    [4]

    Li S M 2005 Chin. J. Appl. Mech. 22 579 (in Chinese) [李舜酩 2005 应用力学学报 22 579]

    [5]

    Yang Y, Dong X J, Peng Z K, Zhang W M, Meng G 2015 J. Sound Vib. 335 350

    [6]

    Lei P, Wang J, Guo P, Cai D D 2011 AEU-Int. J. Electron. Commun. 65 806

    [7]

    Xu L J, Yang Y X, Yang L 2015 Acta Phys. Sin. 64 174304 (in Chinese) [徐灵基, 杨益新, 杨龙 2015 物理学报 64 174304]

    [8]

    Kuang W T, Morris A S 2002 IEEE Trans. Instrum. Meas. 51 440

    [9]

    Gonzlez D, Bialasiewicz J T, Balcells J, Gago J 2008 IEEE Trans. Ind. Electron. 55 3167

    [10]

    Alarcon V C, Daviu J A A, Guasp M R 2012 Electr. Pow. Syst. Res. 91 28

    [11]

    Shi P, Cao G W, Li Y P 2010 Chin. Phys. B 19 074201

    [12]

    Barkat B, Boashash B 1999 IEEE Trans. Signal Process. 47 2480

    [13]

    Andria G, Savino M 1996 IEEE Trans. Instrum. Meas. 45 818

    [14]

    Yin B Q, He Y G, Li B, Zuo L, Yuan L F 2015 Chin. J. Electron. 24 115

    [15]

    Wang L, Xu L P, Zhang H, Luo N 2013 Acta Phys. Sin. 62 139702 (in Chinese) [王璐, 许录平, 张华, 罗楠 2013 物理学报 62 139702]

    [16]

    Wang X L, Wang W B 2015 Chin. Phys. B 24 080203

    [17]

    Chen B X, Li M, Zhang A J 2007 Acta Phys. Sin. 56 4535 (in Chinese) [陈宝信, 李明, 张爱菊 2007 物理学报 56 4535]

    [18]

    Huang Y, Liu F, Wang Z Z, Xiang C W, Deng B 2013 Acta Aeronaut. Et Astronaut. Sin. 34 846 (in Chinese) [黄宇, 刘锋, 王泽众, 向崇文, 邓兵 2013 航空学报 34 846]

    [19]

    Xu G L, Wang X T, Xu X G 2010 Chin. Phys. B 19 014203

    [20]

    Zou H X 2002 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [邹红星 2002 博士学位论文 (北京: 清华大学)]

    [21]

    Namias V 1980 J. Inst. Maths. Appl. 25 241

    [22]

    Yang Y, Peng Z K, Dong X J 2014 IEEE Trans. Instrum. Meas. 63 3169

    [23]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303

    [24]

    Janeiro F M, Ramos P M 2009 IEEE Trans. Instrum. Meas. 58 383

    [25]

    Deng W Y, Zheng Q H, Chen L, Xu X B 2010 Chin. J. Comput. 33 279 (in Chinese) [邓万宇, 郑庆华, 陈琳, 许学斌 2010 计算机学报 32 279]

    [26]

    Nguyen H A, Guo H, Low K S 2011 IEEE Trans. Instrum. Meas. 60 3619

    [27]

    Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102

    [28]

    Bi G, Zeng Y 2007 J. Electron. Inform. Technol. 29 1399 (in Chinese) [毕岗, 曾宇 2007 电子与信息学报 29 1399]

  • [1]

    Ba J 2010 Sci. Sin: Phys. Mech. Astron. 40 1398 (in Chinese) [巴晶 2010 中国科学: 物理学 力学 天文学 40 1398]

    [2]

    Liu X Y, Pei L Q, Wang Y, Zhang S M, Gao H L, Dai Y D 2011 Chin. Phys. B 20 047401

    [3]

    Dugnol B, Fernandez C, Galiano G, Velasco J 2008 Signal Process. 88 1817

    [4]

    Li S M 2005 Chin. J. Appl. Mech. 22 579 (in Chinese) [李舜酩 2005 应用力学学报 22 579]

    [5]

    Yang Y, Dong X J, Peng Z K, Zhang W M, Meng G 2015 J. Sound Vib. 335 350

    [6]

    Lei P, Wang J, Guo P, Cai D D 2011 AEU-Int. J. Electron. Commun. 65 806

    [7]

    Xu L J, Yang Y X, Yang L 2015 Acta Phys. Sin. 64 174304 (in Chinese) [徐灵基, 杨益新, 杨龙 2015 物理学报 64 174304]

    [8]

    Kuang W T, Morris A S 2002 IEEE Trans. Instrum. Meas. 51 440

    [9]

    Gonzlez D, Bialasiewicz J T, Balcells J, Gago J 2008 IEEE Trans. Ind. Electron. 55 3167

    [10]

    Alarcon V C, Daviu J A A, Guasp M R 2012 Electr. Pow. Syst. Res. 91 28

    [11]

    Shi P, Cao G W, Li Y P 2010 Chin. Phys. B 19 074201

    [12]

    Barkat B, Boashash B 1999 IEEE Trans. Signal Process. 47 2480

    [13]

    Andria G, Savino M 1996 IEEE Trans. Instrum. Meas. 45 818

    [14]

    Yin B Q, He Y G, Li B, Zuo L, Yuan L F 2015 Chin. J. Electron. 24 115

    [15]

    Wang L, Xu L P, Zhang H, Luo N 2013 Acta Phys. Sin. 62 139702 (in Chinese) [王璐, 许录平, 张华, 罗楠 2013 物理学报 62 139702]

    [16]

    Wang X L, Wang W B 2015 Chin. Phys. B 24 080203

    [17]

    Chen B X, Li M, Zhang A J 2007 Acta Phys. Sin. 56 4535 (in Chinese) [陈宝信, 李明, 张爱菊 2007 物理学报 56 4535]

    [18]

    Huang Y, Liu F, Wang Z Z, Xiang C W, Deng B 2013 Acta Aeronaut. Et Astronaut. Sin. 34 846 (in Chinese) [黄宇, 刘锋, 王泽众, 向崇文, 邓兵 2013 航空学报 34 846]

    [19]

    Xu G L, Wang X T, Xu X G 2010 Chin. Phys. B 19 014203

    [20]

    Zou H X 2002 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [邹红星 2002 博士学位论文 (北京: 清华大学)]

    [21]

    Namias V 1980 J. Inst. Maths. Appl. 25 241

    [22]

    Yang Y, Peng Z K, Dong X J 2014 IEEE Trans. Instrum. Meas. 63 3169

    [23]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303

    [24]

    Janeiro F M, Ramos P M 2009 IEEE Trans. Instrum. Meas. 58 383

    [25]

    Deng W Y, Zheng Q H, Chen L, Xu X B 2010 Chin. J. Comput. 33 279 (in Chinese) [邓万宇, 郑庆华, 陈琳, 许学斌 2010 计算机学报 32 279]

    [26]

    Nguyen H A, Guo H, Low K S 2011 IEEE Trans. Instrum. Meas. 60 3619

    [27]

    Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102

    [28]

    Bi G, Zeng Y 2007 J. Electron. Inform. Technol. 29 1399 (in Chinese) [毕岗, 曾宇 2007 电子与信息学报 29 1399]

  • [1] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法. 物理学报, 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [2] 周沛, 张仁恒, 朱尖, 李念强. 基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生. 物理学报, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [3] 李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉. 基于粒子群算法的超振荡超分辨聚焦声场设计. 物理学报, 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [4] 宫涛, 杨建华, 单振, 王志乐, 刘后广. 非线性调频信号激励下非线性系统的最优共振响应. 物理学报, 2022, 71(5): 050503. doi: 10.7498/aps.71.20211959
    [5] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [6] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [7] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [8] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性. 物理学报, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [9] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识. 物理学报, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [10] 彭皓, 钟苏川, 屠浙, 马洪. 线性调频信号激励过阻尼双稳系统的随机共振现象研究. 物理学报, 2013, 62(8): 080501. doi: 10.7498/aps.62.080501
    [11] 刘暾东, 陈俊仁, 洪武鹏, 邵桂芳, 王婷娜, 郑骥文, 文玉华. 基于粒子群算法的Pt-Pd合金纳米粒子的稳定结构研究. 物理学报, 2013, 62(19): 193601. doi: 10.7498/aps.62.193601
    [12] 杨珺, 孙秋野, 杨东升. 基于多项式模型的混沌系统平方和算法脉冲控制. 物理学报, 2012, 61(20): 200511. doi: 10.7498/aps.61.200511
    [13] 郑仕链, 杨小牛. 绿色认知无线电自适应参数调整. 物理学报, 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [14] 龙文, 焦建军, 龙祖强. 基于PSO优化LSSVM的未知模型混沌系统控制. 物理学报, 2011, 60(11): 110506. doi: 10.7498/aps.60.110506
    [15] 蒋飞, 刘中, 胡文, 包伯成. 连续混沌调频信号的动力学设计与分析. 物理学报, 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [16] 赵知劲, 徐世宇, 郑仕链, 杨小牛. 基于二进制粒子群算法的认知无线电决策引擎. 物理学报, 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [17] 王校锋, 薛红军, 司守奎, 姚跃亭. 基于粒子群算法和OGY方法的混沌系统混合控制. 物理学报, 2009, 58(6): 3729-3733. doi: 10.7498/aps.58.3729
    [18] 张良英, 金国祥, 曹 力. 调频信号的单模激光线性模型随机共振. 物理学报, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [19] 赵海全, 张家树, 曾祥萍. 混沌通信系统中非线性信道的自适应神经Legendre正交多项式均衡. 物理学报, 2007, 56(4): 1975-1982. doi: 10.7498/aps.56.1975
    [20] 闫 华, 魏 平, 肖先赐. 基于Bernstein多项式的自适应混沌时间序列预测算法. 物理学报, 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
计量
  • 文章访问数:  5589
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-25
  • 修回日期:  2016-01-10
  • 刊出日期:  2016-04-05

/

返回文章
返回