-
Low-temperature interconnection technology, especially RF signal transmission in the 40–4.2 K temperature range, is currently a focus of development. In this temperature range, the transmission line needs to have as little insertion loss and heat leakage as possible. A processing method of preparing coplanar waveguide flexible transmission lines by mechanically cold exfoliating superconducting tape thin films is introduced in this work. Especially YBCO thin films deposited through MOD are more easily exfoliate directly at room temperature. The superconducting transition temperature width of YBCO thin film after exfoliating processing is 0.79 K. Although it is increased by 0.3 K compared with the transition temperature width of the strip, the critical current density at 77 K and 0 T is 7.7 × 105 A/cm2, which is more than 75% of the critical current density of the strip. The exfoliated YBCO thin film is fabricated into a 12-cm-long and 1-cm-wide PI-YBCO-PI three-layer structure transmission line, and the heat leak value is measured to be 0.238 mW in a temperature range from 40 K to 4.2 K. Five signal channels are prepared on a 1cmwide YBCO thin film, and the simulation shows that the crosstalk between adjacent signal channels is <–40 dB, the insertion loss at 9 GHz is <–2 dB, and the heat leak value of each signal channel is 47.6 μW. Compared with the metal transmission lines currently used in this temperature range, the heat leakage is reduced by at least 5 times.
-
图 6 (a) 2G带材R-T曲线; (b)带铜、银的YBCO薄膜R-T曲线; (c) 带银的YBCO薄膜R-T曲线; (d) YBCO薄膜R-T曲线; (e), (f) $ {T}_{{\mathrm{c}}}^{{\mathrm{Z}}{\mathrm{e}}{\mathrm{r}}{\mathrm{o}}}, {T}_{{\mathrm{c}}}^{{\mathrm{O}}{\mathrm{n}}{\mathrm{s}}{\mathrm{e}}{\mathrm{t}}} $随磁场变化曲线
Figure 6. (a) 2G strip R-T curve; (b) R-T curve of YBCO thin film with copper and silver; (c) R-T curve of YBCO thin film with silver; (d) YBCO thin film R-T curve; (e), (f) $ {T}_{{\mathrm{c}}}^{{\mathrm{Z}}{\mathrm{e}}{\mathrm{r}}{\mathrm{o}}}, {T}_{{\mathrm{c}}}^{{\mathrm{O}}{\mathrm{n}}{\mathrm{s}}{\mathrm{e}}{\mathrm{t}}} $versus magnetic field variation curve
表 1 不同机构低温传输线漏热值对比(12 cm, 40—4.2 K)
Table 1. Leakage heat value of low-temperature transmission lines in different institutions (12 cm, 40–4.2 K).
传输线类型 金属传输线 超导传输线(YBCO) 传输线 机构A同轴线 机构B同轴线 PI-YBCO-PI YBCO-Kapton 漏热/μW 1100 255 47.6 127 插损@1 GHz-dB/m 4 5 0.83 — 插损@6 GHz-dB/m — — 7.2 2 -
[1] Holmes D S, Ripple A L, Manheimer M A 2013 IEEE Trans. Appl. Supercond. 23 1701610
Google Scholar
[2] 原蒲升, 余慧勤, 汪书娜, 王永良, 李凌云, 尤立星 2020 低温物理学报 42 117
Yuan P S, Yu H Q, Wang S N, Wang Y L, Li L Y, You L X 2020 Low. Temp. Phys. Lett. 42 117
[3] Zhang T Z, Huang J, Zhang X Y, Ding C M, Yu H Q, You X, Lv C L, Liu X Y, Wang Z, You L X, Xie X M, Li H 2024 Photonics Res. 12 1328
Google Scholar
[4] COAD Y S 2022 US Patent 0 237 491
[5] Gupta D, Sarwana S, Kirichenko D, Dotsenko V, Lehmann A E, Filippov T V, Chang S W, Ravindran P, Bardin J 2021 IEEE Trans. Appl. Supercond. 29 130328
[6] 段思宇, 吴敬波, 范克彬, 张彩虹, 金飚兵, 陈健, 吴培亨 2022 功能材料与器件学报 7 18
Duan S Y, Wu J B, Fan K B, Zhang G H, Jin B B, Chen J, Wu P H 2022 J. Funct. Mater. Devices 7 18
[7] Smith J P, Mazin B A, Walter A B, Daal M, Bailey I I, Bockstiegel C, Zobrist N, Swimmer N, Steiger S, Fruitwala N 2021 IEEE Trans. Appl. Supercond. 31 2500105
[8] Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018 Nature 558 264
Google Scholar
[9] Li L M, He L, Wu X, Niu X K, Wan C, Lin K, Jia X Q, Zhang L B, Zhao Q Y, Tu X C 2021 FITEE 22 1666
Google Scholar
[10] Krinner S, Storz S, Kurpiers P, Magnard P, Heinsoo J, Keller R, Luetolf J, Eichler C, Wallraff A 2018 EPJ Quantum Technol. 6 2
[11] 汪书娜, 余慧勤, 原蒲升, 王永良, 李凌云, 尤立星 2020 低温与超导 50 85
Wang S N, Yu H Q, Yuan P S, Wang Y L, Li L Y, You L X 2020 Cryo. Supercond. 50 85
[12] 禹潇, 张亚辉, 宾峰, 陆勤龙, 王生旺 2022 功能材料与器件学报 1 6
Yu X, Zhang Y H, Bin F, Lu Q L, Wang S W 2022 J. Funct. Mater. Devices 1 6
[13] Solovyov V, Farrell P 2017 Supercond. Sci. Technol. 30 014006
Google Scholar
[14] Solovyov V, Rabbani S, Ma M, Mendleson Z, Haugan T, Farrell P 2019 Supercond. Sci. Technol. 32 054006
Google Scholar
[15] Solovyov V, Saria O P, Mendleson Z, Drozdow I 2021 IEEE Trans. Appl. Supercond. 31 1700105
[16] Solovyov V, Kim H, Farrell P 2024 IEEE Trans. Appl. Supercond. 34 1500205
[17] Bruel M 1996 Phys. Res. B 108 313
[18] Toyoda M, Hou S, Huang Z H, Lnagaki M 2023 Carbon Lett. 33 335
Google Scholar
[19] Saliba M, Atanas J P, Howayek T M, Habchi R 2023 Nanoscale Adv. 5 6787
Google Scholar
[20] Solovyov V F, Develos-Bagarinao K, Li Q, Qing J, Zhou j 2010 Supercond. Sci. Technol. 23 014008
Google Scholar
[21] 王明江 2020 博士学位论文(成都: 西南交通大学)
Wang M J 2020 Ph. D. Dissertation (Chendu: Southwest Jiaotong University
[22] Pahlke P, Trommler S, Holzapfel B, Schultz L, Hühne R 2013 J. Appl. Phys. 113 123907
Google Scholar
[23] Toyota N, Inoue A, Fukase T, Masumoto T 1984 J. Low Temp. Phys. 55 393
Google Scholar
[24] Nakao K, Miura N, Tatsuhara K, Takeya H, Takei H 1989 Phys. Rev. Lett. 63 97
Google Scholar
[25] Sutherland M L, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520
Google Scholar
Metrics
- Abstract views: 292
- PDF Downloads: 5
- Cited By: 0