Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Process development and characteristics of YBCO thin film for radio frequency tranmission wire preparation

TIAN Qingwen YUAN Pusheng YU Huiqin WANG Shuna LIU Xiaoyu LI Lingyun YOU Lixing

Citation:

Process development and characteristics of YBCO thin film for radio frequency tranmission wire preparation

TIAN Qingwen, YUAN Pusheng, YU Huiqin, WANG Shuna, LIU Xiaoyu, LI Lingyun, YOU Lixing
cstr: 32037.14.aps.74.20241583
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Low-temperature interconnection technology, especially radio frequency signal transmission in the 40–4.2 K temperature range, is currently a focus of development. In this temperature range, the transmission line needs to have as little insertion loss and heat leakage as possible. A processing method of preparing coplanar waveguide flexible transmission lines by mechanically cold exfoliating superconducting tape thin films is introduced in this work. Especially YBCO thin films deposited through MOD are more easily exfoliate directly at room temperature. The superconducting transition temperature width of YBCO thin film after exfoliating processing is 0.79 K. Although it is increased by 0.3 K compared with the transition temperature width of the strip, the critical current density at 77 K and 0 T is 7.7 × 105 A/cm2, which is more than 75% of the critical current density of the strip. The exfoliated YBCO thin film is fabricated into a 12-cm-long and 1-cm-wide PI-YBCO-PI three-layer structure transmission line, and the heat leak value is measured to be 0.238 mW in a temperature range from 40 K to 4.2 K. Five signal channels are prepared on a 1cmwide YBCO thin film, and the simulation shows that the crosstalk between adjacent signal channels is < –40 dB, the insertion loss at 9 GHz is < –2 dB, and the heat leak value of each signal channel is 47.6 μW. Compared with the metal transmission lines currently used in this temperature range, the heat leakage is reduced by at least 5 times.
      Corresponding author: YUAN Pusheng, psyuan@mail.sim.ac.cn ; YOU Lixing, lxyou@mail.sim.ac.cn
    • Funds: Project supported by the Shanghai “Phosphor” Science Foundation, China (Grant No. 22YF1456500) and the Chinese Academy of Sciences Technical Support Talent Program (2022).
    [1]

    Holmes D S, Ripple A L, Manheimer M A 2013 IEEE Trans. Appl. Supercond. 23 1701610Google Scholar

    [2]

    原蒲升, 余慧勤, 汪书娜, 王永良, 李凌云, 尤立星 2020 低温物理学报 42 117

    Yuan P S, Yu H Q, Wang S N, Wang Y L, Li L Y, You L X 2020 Low. Temp. Phys. Lett. 42 117

    [3]

    Zhang T Z, Huang J, Zhang X Y, Ding C M, Yu H Q, You X, Lv C L, Liu X Y, Wang Z, You L X, Xie X M, Li H 2024 Photonics Res. 12 1328Google Scholar

    [4]

    Coady S 2022 US Patent 0 237 491

    [5]

    Gupta D, Sarwana S, Kirichenko D, Dotsenko V, Lehmann A E, Filippov T V, Chang S W, Ravindran P, Bardin J 2021 IEEE Trans. Appl. Supercond. 29 130328

    [6]

    段思宇, 吴敬波, 范克彬, 张彩虹, 金飚兵, 陈健, 吴培亨 2022 功能材料与器件学报 28 7

    Duan S Y, Wu J B, Fan K B, Zhang G H, Jin B B, Chen J, Wu P H 2022 J. Funct. Mater. Devices 28 7

    [7]

    Smith J P, Mazin B A, Walter A B, Daal M, Bailey I I, Bockstiegel C, Zobrist N, Swimmer N, Steiger S, Fruitwala N 2021 IEEE Trans. Appl. Supercond. 31 2500105

    [8]

    Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018 Nature 558 264Google Scholar

    [9]

    Li L M, He L, Wu X, Niu X K, Wan C, Lin K, Jia X Q, Zhang L B, Zhao Q Y, Tu X C 2021 FITEE 22 1666Google Scholar

    [10]

    Krinner S, Storz S, Kurpiers P, Magnard P, Heinsoo J, Keller R, Luetolf J, Eichler C, Wallraff A 2019 EPJ Quantum Technol. 6 2

    [11]

    汪书娜, 余慧勤, 原蒲升, 王永良, 李凌云, 尤立星 2020 低温与超导 50 85

    Wang S N, Yu H Q, Yuan P S, Wang Y L, Li L Y, You L X 2020 Cryo. Supercond. 50 85

    [12]

    禹潇, 张亚辉, 宾峰, 陆勤龙, 王生旺 2022 功能材料与器件学报 1 6

    Yu X, Zhang Y H, Bin F, Lu Q L, Wang S W 2022 J. Funct. Mater. Devices 1 6

    [13]

    Solovyov V, Farrell P 2017 Supercond. Sci. Technol. 30 014006Google Scholar

    [14]

    Solovyov V, Rabbani S, Ma M, Mendleson Z, Haugan T, Farrell P 2019 Supercond. Sci. Technol. 32 054006Google Scholar

    [15]

    Solovyov V, Saria O P, Mendleson Z, Drozdow I 2021 IEEE Trans. Appl. Supercond. 31 1700105

    [16]

    Solovyov V, Kim H, Farrell P 2024 IEEE Trans. Appl. Supercond. 34 1500205

    [17]

    Bruel M 1996 Nucl. Instr. and Meth. in Phys. Res. B 108 313

    [18]

    Toyoda M, Hou S, Huang Z H, Lnagaki M 2023 Carbon Lett. 33 335Google Scholar

    [19]

    Saliba M, Atanas J P, Howayek T M, Habchi R 2023 Nanoscale Adv. 5 6787Google Scholar

    [20]

    Solovyov V F, Develos-Bagarinao K, Li Q, Qing J, Zhou J 2010 Supercond. Sci. Technol. 23 014008Google Scholar

    [21]

    王明江 2020 博士学位论文(成都: 西南交通大学)

    Wang M J 2020 Ph. D. Dissertation (Chendu: Southwest Jiaotong University

    [22]

    Pahlke P, Trommler S, Holzapfel B, Schultz L, Hühne R 2013 J. Appl. Phys. 113 123907Google Scholar

    [23]

    Toyota N, Inoue A, Fukase T, Masumoto T 1984 J. Low Temp. Phys. 55 393Google Scholar

    [24]

    Nakao K, Miura N, Tatsuhara K, Takeya H, Takei H 1989 Phys. Rev. Lett. 63 97Google Scholar

    [25]

    Sutherland M L, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520Google Scholar

  • 图 5  (a) YBCO微桥器件SEM图片; (b)微桥宽度; (c), (d)高分辨率YBCO表面

    Figure 5.  (a) SEM image of YBCO microbridge device; (b) microbridge width; (c), (d) high resolution YBCO surface.

    图 1  (a)带材整体结构示意图; (b), (c) YBCO薄膜剥离步骤

    Figure 1.  (a) Schematic diagram of the overall structure of the strip; (b), (c) steps for exfoliating YBCO thin film.

    图 2  (a)脱落的镍基基底; (b), (c)光学显微镜下的镍基表面

    Figure 2.  (a) Nickel based substrate; (b), (c) nickel based surface under optical microscope.

    图 3  (a)剥离的YBCO薄膜粘于PI; (b)腐蚀铜层、银层后的YBCO样品; (c)腐蚀后的YBCO薄膜粘于硅片; (d)裁剪完成后的样品

    Figure 3.  (a) Exfoliated YBCO film and stick it to PI; (b) YBCO samples after corrosion of copper and silver layers; (c) corrosion induced YBCO thin film adhered to silicon wafer; (d) sample after cutting is completed.

    图 4  漏热样品实物图

    Figure 4.  Physical picture of heat leakage sample.

    图 6  (a) 2G带材R-T曲线; (b)带铜、银的YBCO薄膜R-T曲线; (c) 带银的YBCO薄膜R-T曲线; (d) YBCO薄膜R-T曲线; (e), (f) $ {T}_{{\mathrm{c}}}^{{\mathrm{Z}}{\mathrm{e}}{\mathrm{r}}{\mathrm{o}}}, {T}_{{\mathrm{c}}}^{{\mathrm{O}}{\mathrm{n}}{\mathrm{s}}{\mathrm{e}}{\mathrm{t}}} $随磁场变化曲线

    Figure 6.  (a) 2G strip R-T curve; (b) R-T curve of YBCO thin film with copper and silver; (c) R-T curve of YBCO thin film with silver; (d) YBCO thin film R-T curve; (e), (f) $ {T}_{{\mathrm{c}}}^{{\mathrm{Z}}{\mathrm{e}}{\mathrm{r}}{\mathrm{o}}}, {T}_{{\mathrm{c}}}^{{\mathrm{O}}{\mathrm{n}}{\mathrm{s}}{\mathrm{e}}{\mathrm{t}}} $versus magnetic field variation curve

    图 7  (a), (b)不同YBCO薄膜微桥器件的I-V测试曲线

    Figure 7.  (a), (b) I-V test curves of different YBCO thin film micro-bridge devices.

    图 8  YBCO薄膜临界电流密度随磁场变化曲线 (a)样品1; (b)样品2

    Figure 8.  Curve of critical current density of YBCO thin film as a function of magnetic field: (a) Sample 1; (b) sample 2.

    图 9  信号通道插损和相邻通道间的串扰

    Figure 9.  Signal channel insertion loss and crosstalk between adjacent channels.

    表 1  不同机构低温传输线漏热值对比(12 cm, 40—4.2 K)

    Table 1.  Leakage heat value of low-temperature transmission lines in different institutions (12 cm, 40–4.2 K).

    传输线类型 金属传输线 超导传输线(YBCO)
    传输线 机构A同轴线 机构B同轴线 PI-YBCO-PI YBCO-Kapton
    漏热/μW 1100 255 47.6 127
    插损@1 GHz-dB/m 4 5 0.83
    插损@6 GHz-dB/m 7.2 2
    DownLoad: CSV
  • [1]

    Holmes D S, Ripple A L, Manheimer M A 2013 IEEE Trans. Appl. Supercond. 23 1701610Google Scholar

    [2]

    原蒲升, 余慧勤, 汪书娜, 王永良, 李凌云, 尤立星 2020 低温物理学报 42 117

    Yuan P S, Yu H Q, Wang S N, Wang Y L, Li L Y, You L X 2020 Low. Temp. Phys. Lett. 42 117

    [3]

    Zhang T Z, Huang J, Zhang X Y, Ding C M, Yu H Q, You X, Lv C L, Liu X Y, Wang Z, You L X, Xie X M, Li H 2024 Photonics Res. 12 1328Google Scholar

    [4]

    Coady S 2022 US Patent 0 237 491

    [5]

    Gupta D, Sarwana S, Kirichenko D, Dotsenko V, Lehmann A E, Filippov T V, Chang S W, Ravindran P, Bardin J 2021 IEEE Trans. Appl. Supercond. 29 130328

    [6]

    段思宇, 吴敬波, 范克彬, 张彩虹, 金飚兵, 陈健, 吴培亨 2022 功能材料与器件学报 28 7

    Duan S Y, Wu J B, Fan K B, Zhang G H, Jin B B, Chen J, Wu P H 2022 J. Funct. Mater. Devices 28 7

    [7]

    Smith J P, Mazin B A, Walter A B, Daal M, Bailey I I, Bockstiegel C, Zobrist N, Swimmer N, Steiger S, Fruitwala N 2021 IEEE Trans. Appl. Supercond. 31 2500105

    [8]

    Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018 Nature 558 264Google Scholar

    [9]

    Li L M, He L, Wu X, Niu X K, Wan C, Lin K, Jia X Q, Zhang L B, Zhao Q Y, Tu X C 2021 FITEE 22 1666Google Scholar

    [10]

    Krinner S, Storz S, Kurpiers P, Magnard P, Heinsoo J, Keller R, Luetolf J, Eichler C, Wallraff A 2019 EPJ Quantum Technol. 6 2

    [11]

    汪书娜, 余慧勤, 原蒲升, 王永良, 李凌云, 尤立星 2020 低温与超导 50 85

    Wang S N, Yu H Q, Yuan P S, Wang Y L, Li L Y, You L X 2020 Cryo. Supercond. 50 85

    [12]

    禹潇, 张亚辉, 宾峰, 陆勤龙, 王生旺 2022 功能材料与器件学报 1 6

    Yu X, Zhang Y H, Bin F, Lu Q L, Wang S W 2022 J. Funct. Mater. Devices 1 6

    [13]

    Solovyov V, Farrell P 2017 Supercond. Sci. Technol. 30 014006Google Scholar

    [14]

    Solovyov V, Rabbani S, Ma M, Mendleson Z, Haugan T, Farrell P 2019 Supercond. Sci. Technol. 32 054006Google Scholar

    [15]

    Solovyov V, Saria O P, Mendleson Z, Drozdow I 2021 IEEE Trans. Appl. Supercond. 31 1700105

    [16]

    Solovyov V, Kim H, Farrell P 2024 IEEE Trans. Appl. Supercond. 34 1500205

    [17]

    Bruel M 1996 Nucl. Instr. and Meth. in Phys. Res. B 108 313

    [18]

    Toyoda M, Hou S, Huang Z H, Lnagaki M 2023 Carbon Lett. 33 335Google Scholar

    [19]

    Saliba M, Atanas J P, Howayek T M, Habchi R 2023 Nanoscale Adv. 5 6787Google Scholar

    [20]

    Solovyov V F, Develos-Bagarinao K, Li Q, Qing J, Zhou J 2010 Supercond. Sci. Technol. 23 014008Google Scholar

    [21]

    王明江 2020 博士学位论文(成都: 西南交通大学)

    Wang M J 2020 Ph. D. Dissertation (Chendu: Southwest Jiaotong University

    [22]

    Pahlke P, Trommler S, Holzapfel B, Schultz L, Hühne R 2013 J. Appl. Phys. 113 123907Google Scholar

    [23]

    Toyota N, Inoue A, Fukase T, Masumoto T 1984 J. Low Temp. Phys. 55 393Google Scholar

    [24]

    Nakao K, Miura N, Tatsuhara K, Takeya H, Takei H 1989 Phys. Rev. Lett. 63 97Google Scholar

    [25]

    Sutherland M L, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C, Taillefer L, Liang R, Bonn D A, Hardy W N, Gagnon R, Hussey N E, Kimura T, Nohara M, Takagi H 2003 Phys. Rev. B 67 174520Google Scholar

  • [1] Yi Qi-Ru, Xiong Pei-Yu, Wang Huan-Hua, Li Gang, Wang Yun-Kai, Dong En-Yang, Chen Yu, Shen Zhi-Bang, Wu Yun, Yuan Jie, Jin Kui, Gao Chen. Microstructure study of YBa2Cu3O7-δ thin film with synchrotron-based three-dimensional reciprocal space mapping. Acta Physica Sinica, 2023, 72(4): 046101. doi: 10.7498/aps.72.20221776
    [2] Ye Zhi-Hong, Zhang Jie, Zhou Jian-Jian, Gou Dan. Time domain hybrid method for coupling analysis of multi-conductor transmission lines on the lossy dielectric layer excited by ambient wave. Acta Physica Sinica, 2020, 69(6): 060701. doi: 10.7498/aps.69.20191214
    [3] Zou Jian-Long, Shen Yao, Ma Xi-Kui. Complex spatiotemporal behaviors in a transmission line system terminated by an N-channel metal oxide semiconductor (NMOS) inverter. Acta Physica Sinica, 2012, 61(17): 170514. doi: 10.7498/aps.61.170514
    [4] Liu La-Qun, Liu Da-Gang, Wang Xue-Qiong, Yang Chao, Xia Meng-Zhong, Peng Kai. The numerical simulation of the electronic energy deposition and temperature variation in post-hole convolute of magnetically insulated transmission lines. Acta Physica Sinica, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [5] Xu Hang, Wang An-Bang, Han Xiao-Hong, Ma Jian-Yi, Wang Yun-Cai. Measuring breakpoints and impedance mismatch for dielectric transmission lines by using correlation method of chaotic signals. Acta Physica Sinica, 2011, 60(9): 090503. doi: 10.7498/aps.60.090503
    [6] Guo Fan, Li Yong-Dong, Wang Hong-Guang, Liu Chun-Liang, Hu Yi-Xiang, Zhang Peng-Fei, Ma Meng. Particle-in-cell simulation of outer magnetically insulated transmission line of Z-pinch accelerator. Acta Physica Sinica, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [7] He Li, Zhang Li-Wei, Xu Jing-Ping, Wang You-Zhen. The tunneling properties of the bilayer structure composed of single negative materials based on transmission lines. Acta Physica Sinica, 2010, 59(9): 6106-6110. doi: 10.7498/aps.59.6106
    [8] Shi Peng-Fei, Tang Zhen-An, Liu Shu-Tian, Gao Ren-Jing, Duan Yu-Ping. Transmission line analogy model of left-handed metamaterials microstructure configuration. Acta Physica Sinica, 2010, 59(12): 8566-8573. doi: 10.7498/aps.59.8566
    [9] Wan Jian-Ru, Liu Ying-Pei, Zhou Hai-Liang. Transmission and reflection of high-frequency power pulse in cable based on transmission theory. Acta Physica Sinica, 2010, 59(5): 2948-2951. doi: 10.7498/aps.59.2948
    [10] Liu La-Qun, Meng Lin, Deng Jian-Jun, Song Sheng-Yi, Zou Wen-Kang, Liu Da-Gang, Liu Sheng-Gang. The implementation of the computer simulation of magnetically insulated transmission lines in post-hole convolute. Acta Physica Sinica, 2010, 59(3): 1643-1650. doi: 10.7498/aps.59.1643
    [11] Li You-Quan, Fu Yun-Qi, Zhang Hui, Yuan Nai-Chang. Analysis of reflection phase for high impedance surface based on a transmission line model. Acta Physica Sinica, 2009, 58(6): 3949-3954. doi: 10.7498/aps.58.3949
    [12] Wu Zhen-Jun, Wang Li-Fang, Liao Cheng-Lin. A novel FDTD method for multi-conductor transmission lines terminating in frequency-dependent loads. Acta Physica Sinica, 2009, 58(9): 6146-6151. doi: 10.7498/aps.58.6146
    [13] Li Hai-Yang, Zhang Ye-Wen, Wang Peng-Chun, Li Gui-Quan. The transmission properties of resonant structure of one-dimension metamaterials. Acta Physica Sinica, 2007, 56(11): 6480-6485. doi: 10.7498/aps.56.6480
    [14] Hao Jian-Hong, Ding Wu, Dong Zhi-Wei. Moltipactor discharge in a magnetically insulated transmission line oscillator. Acta Physica Sinica, 2006, 55(9): 4789-4794. doi: 10.7498/aps.55.4789
    [15] Cai Yan-Qing, Yao Xin, Li Gang. Study on the superheating phenomenon of YBCO thin film. Acta Physica Sinica, 2006, 55(2): 844-848. doi: 10.7498/aps.55.844
    [16] Wang Zhong-Chun. The quantization of a mesoscopic dissipation transmission line. Acta Physica Sinica, 2003, 52(11): 2870-2874. doi: 10.7498/aps.52.2870
    [17] LIU JING-HE, SUN QIANG, LIU XIANG-DONG, XING HONG-YAN, LI JIAN-LI, LI GUO-ZHEN, HUANG ZONG-TAN, HUANG CHENG-CAI, LI DAN, HUANG JIANG-PING. STUDY ON SEMICONDUCTING YBCO THIN FILM AND CHARACTERISTICS OF BOLOMETER. Acta Physica Sinica, 2000, 49(10): 2017-2021. doi: 10.7498/aps.49.2017
    [18] WANG YIN-YUE, ZHEN CONG-MIAN, GONG HENG-XIANG, YAN ZHI-JUN, WANG YA-FAN, LIU XUE-QIN, YANG YING-HU, HE SHAN-HU. MEASUREMENT OF THE SPECIFIC CONTACT RESISTANCE OF Au/Ti/p-DIAMOND USING TRANSMIS SION LINE MODEL. Acta Physica Sinica, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
    [19] ZENG LING-RU. A METHOD OF SOLVING TRANSMISSION LINES OF SPECIFIC CROSS-SECTION. Acta Physica Sinica, 1982, 31(6): 709-721. doi: 10.7498/aps.31.709
    [20] ZENG LING-RU. CHARACTERISTIC IMPEDANCES OF COUPLED SQUARE BARS TRANSMISSION LINE BETWEEN PARALLEL PLATES. Acta Physica Sinica, 1982, 31(6): 840-846. doi: 10.7498/aps.31.840
Metrics
  • Abstract views:  584
  • PDF Downloads:  22
  • Cited By: 0
Publishing process
  • Received Date:  12 November 2024
  • Accepted Date:  11 December 2024
  • Available Online:  08 January 2025
  • Published Online:  05 March 2025

/

返回文章
返回