-
The dynamical behaviors of Bose-Einstein condensates (BECs) depend largely on the nonlinear interactions between BEC atoms. The advancement of experimental techniques enables the rapid and effective modulation of the nonlinear interactions through Feshbach resonance technique. At present, both the time-varying nonlinear interaction and space-varying nonlinear interaction have been realized, respectively. This makes it possible to simultaneously modulate the nonlinear interactions in time and space through the combination of techniques. It will provide more options to conduct various studies by manipulating the BECs. Therefore, BECs with time- and space-varying interactions must possess unique advantages in studying BEC dynamics.
This paper studies the chaotic spatiotemporal dynamics of BECs with time- and space-varying nonlinear interactions in moving optical lattices. When the intensities of the moving optical lattice potential and the modulation of the nonlinear interaction are small, the system satisfies the perturbation conditions and the Melnikov-function method is used in the theoretical analyses to obtain the Melnikov spatiotemporal chaotic criterion of the system. When the system does not meet the perturbation conditions, numerical simulations show that, for a BEC with an attractive atomic interaction, increasing the modulation intensity of the nonlinear interaction can deepen the degree of spatiotemporal chaos in the system. In certain parameter regions, the modulation frequency of the nonlinear interaction can have a significant impact on the spatiotemporal dynamical behavior of the system. Further numerical research results show that larger chemical potentials can suppress the spatiotemporal chaos in not only the attractive but also the repulsive BECs. Based on the above research results, it is possible to avoid or trigger spatiotemporal chaos of BEC systems in experiments according to demand.-
Keywords:
- Bose-Einstein condensates /
- Travelling optical lattice /
- Melnikov chaotic criterion /
- chaos
-
[1] Anderson M H, Ensher J R, Matthews M R, E Wieman C 1995 Cornell E A, Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995Phys. Rev. Lett. 75 3969
[3] Efremidis N K, Sears S, Christodoulides D N, Fleischer J W, Segev M 2002Phys. Rev. E 66 046602
[4] BenDahan M, Peik E, Reichel J, Castin Y, Salomon C 1996Phys. Rev. Lett. 76 4508
[5] Anderson B P, Kasevich M A 1998Science 282 1686
[6] Liu S, Xiong H, Xu Z, Huang G 2003J. Phys. B 36 2083
[7] Gao J M, Di G W, Yu Z F, Tang R A, Xu H P, Xue J K 2024Acta Phys. Sin. 73130503 (in Chinese) [高吉明, 狄国文, 鱼自发, 唐荣安, 徐红萍, 薛具奎2024物理学报73130503]
[8] Pachos J K, Knight P L 2003Phys. Rev. Lett. 91 107902
[9] Morsch O, Müller J H, Cristiani M, Ciampini D, Arimondo E 2001Phys. Rev. Lett. 87 140402
[10] Bhattacherjee A B, Pietrzyk M 2008Cent. Eur. J. Phys. 6 26
[11] Choi D I, Niu Q 1999Phys. Rev. Lett. 82 2022
[12] Wu B, Niu Q 2001Phys. Rev. A 64061603(R)
[13] Cristiani M, O Morsch, Müller J H, Ciampini D, E Arimondo 2002 Phys. Rev. A 65 063612
[14] Liu J, Fu L B, Ou B Y, Chen S G, Choi D I, Wu B, Niu Q 2002 Phys. Rev. A 66023404
[15] Choi D I, Niu Q 2003Phys. Lett. A 318, 558
[16] Trombettoni A, Smerzi A 2001Phys. Rev. Lett. 86 2353
[17] Berg-Sørensen K, Mølmer K 1998Phys. Rev. A 58 1480
[18] Holthaus M 2000J. Opt. B: Quantum Semiclassical Opt. 2 589
[19] Cerimele M M, Chiofalo M L, Pistella F, Succi S, Tosi M P 2000Phys. Rev. E 62 1382
[20] Scott R G, Martin A M, Fromhold T M, Bujkiewicz S, Sheard F W, Leadbeater M 2003 Phys. Rev. Lett. 90110404
[21] Filho V S, Gammal A, Frederico T, Tomio L 2000Phys. Rev. A 62 033605(R)
[22] Hai W H, Lee C H, Chong G S, Shi L 2002Phys. Rev. E 66 026202
[23] Li F, Shu W X, Jiang J G, Luo H L, Ren Z Z 2007Eur. Phys. J. D 41 355
[24] Li F, Shu W X, Luo H L, Ren Z Z 2007Chin. Phys. 16 650
[25] Li F, Ren Z Z, Luo H L, Shu W X, Wu Q 2007Commun. Theor. Phys. 48 107
[26] Li F, Zhang D X, Li W B 2011Acta Phys. Sin. 60 120304(in Chinese) [李飞,张冬霞,李文斌2011物理学报60120304]
[27] Li F, Zhang D X, Rong S G, Xu Y 2013J. Exp. Theor. Phys. 117 800
[28] Li F, He Z J, Li W W 2023Commun. Theor. Phys. 75 035501
[29] Li F, Li W W, He Z J 2023Rom. J. Phys. 68 103
[30] Chong G S, Hai W H, Xie Q T 2004Phys. Rev. E 70 036213
[31] Wang G F, Fu L B, Zhao H, Liu J 2005 Acta.Phys.Sin. 545003(in Chinese) [王冠芳、傅立斌、赵鸿、刘杰2005物理学报545003]
[32] Zhu Q Q, Hai W H, Rong S G 2009 Phys. Rev. E 80016203
[33] Wang L, Liu J S, Li J, Zhou X L, Chen X R, Liu C F, Liu W M 2020Acta Phys. Sin. 69010303(in Chinese) [王力, 刘静思,李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明2020物理学报69010303]
[34] Wang Q Q, Zhou Y S, Wang J, Fan X B, Shao K H, Zhao Y X, Song Y, Shi Y R 2023Acta Phys. Sin. 69010303(in Chinese) [王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁2023物理学报72 10030
[35] Ruprecht P A, Edwards M, Burnett K, Clark C W 1996Phys. Rev. A 54 4178
[36] Denschlag J H Simsarian, J E, Häffner H, McKenzie C, Browaeys A, Cho D, Helmerson K, Rolston S L, Phillips W D 2002J. Phys. B 35 3095
[37] Mellish A S, Duffy G, McKenzie C, Geursen R, Wilson A C 2003Phys. Rev. A 68 051601(R)
[38] Fallani L, Cataliotti F S, Catani J, Fort C, Modugno M, Zawada M, Inguscio M 2003 Phys. Rev. Lett. 91240405
[39] Kagan Y, Surkov E L, Shlyapnikov G V 1997Phys. Rev. Lett. 792604
[40] Cornish S L, Claussen N R, Roberts J L, Cornell E A, Wieman C E 2000ibid. 851795
[41] Kevrekidis P G, Theocharis G, Frantzeskakis D J, Malomed B A 2004Phys. Rev. Lett. 90 230401;
[42] Theocharis G, Schmelcher P, Kevrekidis P G, Frantzeskakis D J 2005Phys. Rev. A 72 033614
[43] Abdullaev F Kh, Garnier J 2005 Phys. Rev. A 72 061605(R)
[44] He J R, Li H M 2011Phys. Rev. E 83 066607
[45] Avelar A T, Bazeia D, Cardoso WB 2009Phys. Rev. A 79 025602(R)
[46] Wang D S, Hu X H, Liu W M 2010Phys. Rev. A 82 023612
[47] Beitia J B, García V M P, Vekslerchik V, Konotop V V 2008Phys. Rev. Lett. 100 164102
[48] Arroyo Meza L E, de Souza Dutra A, Hott M B 2012Phys. Rev. E 86 026605
[49] Arroyo Meza L E, Souza Dutra A de, Hott M B 2013Phys. Rev. E 88 053202
[50] Cardoso W B, Leão S A, Avelar A T, Bazeia D, Hussein M S 2010Phys. Lett. A 374 4594
[51] Wang D S, Song S W, Xiong B, Liu W M 2011Phys. Rev. A 84 053607
[52] Wang D S, Song S W, Liu W M 2012 Journal of Physics: Conference Series 400 012078
[53] He J R, Yi L 2014Phys. Lett. A 378 1085
[54] Rong S G, Hai W H, Xie Q T, Zhong H H 2012 Chaos 22033109
[55] Parker N G, Proukakis N P, Barenghi C F, Adams C S 2004Phys. Rev. Lett. 92 160403; Parker N G, Proukakis N P, Barenghi C F, Adams C S 2004J. Phys. B 37 175
[56] Proukakis N P, Parker N G, Barenghi C F, Adams C S 2004Phys. Rev. Lett. 93 130408
[57] Gardiner S A, Jaksch D, Dum R, Cirac J I, P. Zoller 2000Phys. Rev. A 62 023612
[58] Machholm M, Pethick CJ, Smith H 2003 Phys. Rev. A 67 053613
[59] Goldstein E V, Meystre P 1999Phys. Rev. A 59 1509
[60] Goldstein E V, Meystre P 1999 Phys. Rev. A 59, 3896
[61] Ling H Y 2001Phys. Rev. A 65 013608
[62] Liu S K, Liu S D 2012Nonlinear Equations in Physics (2nd edition) (Beijing: Peking University Press) p68(in Chinese) [刘式适,刘式达2012物理学中的非线性方程(第二版)(北京:北京大学出版社)第68页]
[63] Li F, Zhou B J, Shu W X, Luo H L, Huang Z Y, Tian L 2008Eur. Phys. J. D 5075
[64] Stavans J, Heslot F, Libchaber A 1985Phys. Rev. Lett. 55 596
[65] Bishop A R, Forest M G, McLaughlin D W, Overman II E A 1986 Physica D 23 293
Metrics
- Abstract views: 37
- PDF Downloads: 0
- Cited By: 0